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BROWNIAN MOTION, GEOMETRY, AND GENERALIZATIONS 

OF PICARD'S LITTLE THEOREM 

BY S. I. GOLDBERG1 AND C. MUELLER2 

ABSTRACT. Brownian motion is introduced as a tool in Riemannian geometry, 
and it is shown to be useful in the function theory of manifolds, as well as in 
the study of maps between manifolds. As applications, a generalization of 
Picard's little theorem, and a version of it for Riemann surfaces of large genus 
are given. 

1. Beard's theorem for nonhyperbolic manifolds. Let M and N be com­
plete Riemannian manifolds with metrics Mg, Ngt resp. Assume F: M —• N is a 
C2 map. F is said to be harmonic [2] if its second fundamental form has trace 
0. Define the tensor 

Since (£*P(x)) is a symmetric matrix, its eigenvalues are nonnegative, and we may 
order them as follows: Xx(x) > X2(x) > • • • > \n(x) > 0. F is said to be K-
quasiconformal [5] if \x(x) < K2\n(x) for all x GM. 

We define polar coordinates (r, 0) on N via the exponential map. There 
will be two restrictions on the curvature of N: 

(i) The sectional curvatures of N are bounded below by -L2 < 0. 
(ii) Each of the sectional curvatures at (r, 6) EN determined by dr and 

some other tangent vector, is bounded above by K(r), where K(r) satisfies (a) 
for some e > 0, -K(f) ~ r2e~2 ; (b) there exists a C°° solution u(r) of the equa­
tion 

u\r) = K(r)u(r), u(0) = 0, «'((»= 1, 

and u'(r) is always positive. 
(Note that such a solution can always be found if K(r) is negative.) 

THEOREM 1. Suppose M and N are as above with the curvature ofN satis­
fying (i) and (ii). Then, if Brownian motion on M has trivial tail o-field, every 
K-quasiconformal harmonic map F: M —• N is constant. 
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2. Proof of Theorem 1. The following lemmas are essential. 

LEMMA 2. Let Xt be Brownian motion on M, with XQ chosen so that 
F(X0) = xN GN\{x0}. Then, there is a random time change a(t) (= f0 ds/kt(xs)) 
and a constant C> 0, such that ifpt=r o F(Xa{t))9dpt = a(Xa(t))dBt + b(Xa(t))dt, 
when F(Xt) ¥= x0, where Bt is some Brownian motion, l/K < \a(Xa,t))\ < 1 and 
b(Xa^) > Cp^2"1 if pt is larger than some constant R. 

The statement uses the stochastic calculus discussed in [8]. 
Let r be a stopping time for Xa,ty 

LEMMA 3. If p£T) is the distance ofF(Xa^) from F(Xa(^T)), then for t>r 
andpM * 0, tfp<r> = a^\Xa{t))dB^ + b^T\Xo(t))dtf where l/K < \a^(Xa(t))\ 
< 1 and \biT\Xo(t)\ < (n/2)L coth Lp\T). 

The proofs of Lemmas 2 and 3 require Ito's lemma, the A'-quasiconformal 
condition, and the Hessian comparison theorem of Greene and Wu [3]. Lemma 
2 is used to determine the speed with which pt goes to °°. 

LEMMA 4. lim inf^^ p t / / 2 , 4 ~ 6 > c > 0. 

Lemma 4 will be required in the proof of 

LEMMA 5. Let TQ be the first time that pt > Q. Then, for h sufficiently 
large, there is a q G (0, 1) and a constant Cx such that 

P{Pt+TQ >Cx(t + h?l*-€ for t > 0 | Xa(TQ)} > q 

uniformly in Xa{rQ). 

LEMMA 6. Let r = inf(r(x), r(y)) for x, y EN. If \®(x, y)\ denotes the 
angular distance between 6(x) and 6(y), then for some constants C and R, r>R, 

\e(x,y)\<C^^, 
exp(re) 

where Nd denotes the distance in the manifold N. 

PROOF. We use the Rauch comparison theorem for the same comparison 
manifold P as is used in the proof of Lemma 2. 

LEMMA 7. There exists a random time T such that for all m> T, 

sup Nd(F(Xt),F(Xa(m)))<m. 
o(m)<t<o(m + l) 

PROOF. Using Lemma 3, we must show, for m> T, that supm < f < m + 1pjm^ 
< m. The argument is similar to an idea of Prat [11], and is also used by 
Kendall [7] and Pinsky [10]. 
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LEMMA 8. Fix ô > 0. If r is a stopping time, we may choose an integer 
J so large that 

P{ sup p < T + w ) < m + 7, for a l lm> 1} > 1 - Ô . 
T<t—m<T+ 1 

Lemmas 4-8, and a result of Stroock and Varadhan [12, Theorem 3.1] 
show that the tail a-field l im^^ 6(F(Xt)) of Xt exists and is nontrivial. This is 
a contradiction, so F must be constant. 

3. Picard's theorem for Riemann surfaces of large genus. In the sequel, 
let M and N be compact Riemann surfaces with a finite number of points deleted. 
Any such surface N is homeomorphic to a sphere with t(N) tori attached and 
p(N) points deleted. Let n(N) = 2t(N) + p(N). 

THEOREM 2. Let F: M —> N be a holomorphic map. If t(M) > 0, p(M) 
> 0, p(N) > 1, and n(N) - n(M) > 0, then F is constant. 

PROOF OF THEOREM 2. The proof uses Brownian motion on Riemann 
surfaces, which can be defined as follows. Let {mt} be coordinate patches on My 

and for each /', let ct: m. —> C, where C is the complex plane, be a holomorphic 
map. For p^My choose a patch m^ containing p. Let W(t) be Brownian 
motion in C, and let ox be the first time that p + W(t) hits the boundary of 
ci(i)(m/(i))- F o r ° < r < °i > let *(0 = cT(l)(P + ^ ) ) . N e x t > l e t w,-(2) b e a 

patch containing B(ox), and let o2 be the first time that Cj^ifiiPi)) + ^ (0 "" 
W(ai) hits the boundary of m ^ . For ox < f < a2, let 

* 0 = ^ ( « W ^ i » + ^ " ^ i » ' 

and note that we have defined B(f) to be continuous at a1. For fc > 2, define 
ok and 5(0, afc < f < ak+ x, analogously. 

We also need 

LEMMA 9. Z,ef p(N) > 0. TTiew /7ze fundamental group of N is the free 
group with n(N) - 1 generators. The generators may be taken to be the cycles 
around single points (except one) and the canonical generators of the tori. 

Suppose F is not constant. Let G(M) be the fundamental group of M with 
base point py and let G{N) be the fundamental group of N with base point F(p). 
Let {of}, {of} be the generators of G(M), G(N), resp., as described in Lemma 
9. Choose 2 generators o^, o^ of G(M) which are generators of a torus, and 
let a^, . . . , O^(M)-I be the remaining generators. Let H(M) be the smallest 
normal subgroup of G(M) containing o^, . . . , off(M)-i anc* t n e commutator 
[G(M), G(M)]. Let G(M) = G(M)/H(M), and note that G(M) is isomorphic to 
Z x Z. 
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Let Ö, Ö2> Ö3 ^e neighborhoods of p, contained in mfn\9 whose images 
under <?Yn are discs of radii e, 2e, 3e, respectively. Let BQ(f) be the Brownian 
motion on M whose initial distribution B(0) is the measure Q, concentrated on 
the boundary of 0. Let r0 = 0; given TV let r / + 1 be the first time after rt for 
which B(ri+1) G dö, and {2?(0- ^ < t < rf.+ 1} corresponds to a nontrivial ele­
ment of G(M). Note that since 71/ is compact except for deleted points, all Tt 

are finite. 
Next, let xn = B^(rn), and note that xn is a Markov process with respect 

to the fields o{B(f): t <rn}. Let m be the measure on 30 induced by Lebesgue 
measure on the circle c.^fóO). By a theorem of Harris [6], it can be shown 
that xn has an invariant measure. We set Q equal to this measure. 

Let Xt be the element of G(M) corresponding to {BQ(t): 0 < t < r f}. 
Since G(M) = Z x Z, we may regard Xt as a random walk on R2. Let A. = 
Xf - Xi_1. Then, {Af.} is a stationary process with ^lA^I4 < «>. Moreover the 
process is symmetric, so A;. and -A .̂ have the same distribution. Using the cen­
tral limit theorem (see Theorem 9 of Phillip [9]), it is shown that Xt is recurrent. 
By Lemma 3.1 of [1], it follows that X. is recurrent. 

Now, F induces a map FH from/// [H, H] toG(N)/[G(tf),G(N)]. Since these 
are commutative groups with difference in dimension at least 3, it follows that 
there must be at least 3 generators of, o£, a% of G(N) which generate a sub­
group of G(N)/[G(N), G(7V)] modulo F^{Hj\Hy H] ) isomorphic to Z x Z x Z. 
Let H(N) be the smallest normal subgroup of G(N) containing off, . . . , cff/N\1 

and [G(7V), G(N)], and let G(N) = G(N)/H(N). Then, F induces a map F from 
G(W) to G(7V). 

Using Brownian motion on N, we construct as before an invariant measure 
g on F(0) and a random walk Ff. from F(B(t)). By a theorem of Levy [1], 
F(B(t)) is Brownian motion on N with a new time scale. By the Borel-Cantelli 
lemma, Yi is transient. Davis's argument [1] then shows that the random walk 
Yt induced by F(B(t)) with £(0) = p is also transient. But then F(X{) = Y., and 
Xt is recurrent. This contradiction shows that F must be constant. 
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