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ON THE COHOMOLOGY OF CHEVALLEY GROUPS!
BY ERIC M. FRIEDLANDER AND BRIAN PARSHALL

Let G be a simple, simply connected algebraic group defined and split
over the prime field F,p=>3. LetVbea finite dimensional rational G-module.
As shown in [1], for d suitably large, the Eilenberg-Mac Lane cohomology groups
H*(G(de), V) achieve a stable value H;en(G, V), the so-called generic cohomology
of V. This generic cohomology can in turn be determined from the rational co-
homology groups H%,(G, V(") r > 1, where V") stands for the module ¥ with
the action of G twisted by the rth power of the Frobenius morphism ¢: G — G.
In this paper we announce an explicit determination of the cohomology groups
H%.(G, V")), and hence of the generic cohomology groups HE\ (G, V),ina
range of cohomology degrees (restricted by the prime p) for an arbitrary irredu-
cible rational module ¥ whose high weight lies in the bottom p-alcove. In parti-
cular, we obtain stability in H;’en(G, V) for large p, answering a question raised
by Scott [6]. Our methods involve a determination in a range of degrees of the
cohomology of the restricted enveloping algebra of the Lie algebra of G.

The general Theorem 4 below is motivated by the “experimental evidence”
provided by Theorem 1. This result concerning the general linear group is parti-
cularly strong in terms of its range of degrees, its applicability to small fields, and
its description of the k-algebra structure. Here k is an algebraically closed field
of characteristic p.

THEOREM 1. The following k-algebras are isomorphic in degrees less than
min(2p — 1, d(2p — 3) — 2), where q = p°:

H¥GL,(F,), M,); H%(GL,, MD), r=>1; k[]/("), deg(r) = 2.

In Theorem 1, M,, is viewed as the adjoint representation of the algebraic
group GL, over k. We emphasize that H*(GLn(Fq), M,) and H%,(GL,,, MS,’ )
have natural k-algebra structures because GL,, acts as (associative) k-algebra auto-
morphisms on M,,. These multiplicative structures are analyzed using external
comultiplications in cohomology induced by external tensor product maps
GL, xGL,— GL,,,.

The key step in the proof of Theorem 1 is the identification of

H*B,(F,), M,)
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in the appropriate range of degrees, where B, (F,) is the Borel subgroup of upper
triangular matrices in GL,(F,). This is achieved by studying the spectral sequences
associated to the extension

1= R,(F,) = B,(F,) — B,_,(F) — 1

and an appropriate filtration of the B, (F,)-module M,,.
Theorem 1 has the following two corollaries. This first is based on the
work of [2], which inspired the present study.

COROLLARY 2. For p > 5, Ks(Z/p*Z) has nonzero p-torsion.

CoROLLARY 3. Let h: GL,, — G be the hyperbolic map, where G = S0,,,
80,, +1,0r Sp,,. Then there is an induced map

h*: H(G(F,),8) — H'(GL,(F,), M,)

Which is surjective for i = 4/ — 2 < min(2p — 2, d(2p — 3) — 2), where g is the
adjoint representation of G.

We now consider a simple, simply connected algebraic group G defined and
split over F, and an irreducible module ¥, with highest weight A in the closure of
the bottom p-alcove of the weight lattice of G. Such a G-module is obtained by re-
ducing modulo p the complex irreducible module V() of highest weight X for
the complex Lie algebra g associated to G.

THEOREM 4. Let G be as described above, and assume also that p > 2h,
where h is the Coxeter number of the root system of G. Let \ be a dominant weight
in the closure of the bottom p-alcove of the weight lattice of G. Foranyr>1,
H,’at(G, V(’)) has dimension equal to the number of ‘“generalized exponents” of
X\ which equal if2, provided that i is less than 1/4(p — 2h + 2).

Following Hesselink [3], generalized exponents m;(\) < - - * < my;, (A) of
a dominant weight A can be determined as follows. Let ®* be the set of posi-
tive roots in the root system ® of g, p = £Z, g+ . For a weight x let p,(x)
be the number of maps f from ®* into the nonnegative integers satisfying n =
2f (o) and x = Zf(e)a. If W is the Weyl group, define

d,0) = Y detw)p, (WO + p) - p).
weEW

Then myQ\) = min{m: i <dyQ) + - - - +d,,(\)}. The generalized exponents
arise in describing the G -module structure of the algebra of polynomial func-
tions on g, (Kostant [4]). For X the high weight of the adjoint representation,
they are the usual exponents.
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As a corollary of Theorem 4 and the results of [1], we conclude the fol-
lowing result:

COROLLARY 5. Assume the notation of Theorem 4, and let i be in the
range indicated there. Then Hi, (G, V,) = H%(G, Vi), r > 1. Consequently,
H;en(G, V) has dimension equal to the number of generalized exponents of X
equal to if2.

We remark that the arithmetic results of [1] give conditions on d which
guarantee that H'(G(F,d), V,) = HL. (G, V).

The proof of Theorem 4 proceeds with an analysis of the infinitesimal ex-
tension of affine k-groups

1—-6,—6% 6— 1.

Induction reduces the analysis to the case r = 1, in which case G, is the infinite-
simal group whose associated finite dimensional Hopf algebra has dual isomorphic
to the restricted enveloping algebra V(g) of the Lie algebra g of G. The coho-
mology groups H*(V(g), k) when viewed as rational representations of G/G, are
duals of Weyl modules in a range of degrees. The computation of H%,(G, V{’ ")
is then reduced, in view of results of [1], to the following fundamental result
which was motivated by May [5]:

THEOREM 6. Let G be a simple, simply connected algebraic group de-
fined and split over F, » with Lie algebra @ . There exists a natural first quadrant
spectral sequence of differential graded algebras

Egrmtn = smg#H)D @ A(gH) = HP (W), k)

whose differentials are G-invariant derivations, where q# is the k-dual of g. This
implies the isomorphism of G-modules

H'(V(g), k) = 4@V

in a range (given in Theorem 4), where A*(g¥) is the space of “harmonics”
determined by a G-isomorphism (in a range) A*(g%) ® S*(g*)® = S*(g*).

In view of recent results of Wang [7] on filtrations of tensor products of
Weyl modules, the proof of Theorem 4 also applies to provide a computation of
generic Ext-groups.
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