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THE EXTENT OF DEFINABLE SCALES 
BY DONALD A. MARTIN, YIANNIS N. MOSCHOVAKIS AND JOHN R. STEEL 1 

The notion of a scale on a pointset is implicit in the classical proof of the 
Kondo uniformization theorem for E^ sets and in the uniformization theorem of 
Martin and Solovay [2] for X3 sets, from the assumption that measurable cardin­
als exist. It was formally isolated in Moschovakis [3], where it was shown 
(granting projective determinacy) that all projective sets admit projective scales — 
and hence, projective sets can be projectively uniformized. Soon after that it 
became clear that sets which admit definable scales have many desirable proper­
ties in addition to uniformization, and the natural problem arose to determine 
exactly which sets admit definable scales. 

Assuming hyperprojective determinacy, Moschovakis [5] proved that every 
inductive set admits an inductive scale and asked the obvious next question, 
whether coinductive sets admit definable scales. This appeared to be a crucial 
test of the strength of determinacy hypotheses and we included it in the list of 
Victoria Delfino problems in [1]. 

We will show here (in outline) that under strong determinacy hypotheses, 
every coinductive set indeed admits a definable scale - which is typically sub­
stantially more complicated than the given set. We will also solve completely the 
general problem of the extent of scales within the model L(R) of sets construc­
tible above the continuum: if L(R) satisfies the axiom of full determinacy (AD), 
then within L(R), a set admits a scale if and only if it is a X\ set (this settles a 
conjecture of Solovay). One of the lemmas in the latter proof is a simple and 
elegant characterization of the X\ sets in L(R) which is proved in classical Zermelo-
Fraenkel set theory and appears to be an analog of the Shoenfield absoluteness 
theorem (for 2*) for this model. 

It is convenient to assume the notation and terminology of [6], but we will 
repeat some of the basic definitions that we need in order to make this note more 
easily comprehensible. Full proofs and related results will be published elsewhere. 

1. Scales on coinductive sets. As usual, a space is any product 

X = Xx x • • • x Xn 
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of copies of co (the integers) and W = ^co (the "reals") and a pointset is any 
subset P C X of a space. A semiscale on P is any sequence Tp = <y?f: i G co> of 
norms ty: P —• ordinals on P, such that if x0, xt, . . . G P, l i m ^ ^ xn = x and 
if for each i the sequence of ordinals <ty(xn): n G co> is ultimately constant, then 
JC G P; <p is a scale if the same assumptions imply that for all /, y.(x) < l i m ^ ^ ^(xw). 

For any pointclass (collection of pointsets) T, a norm <p: P —• ordinals is 
a Y-norm if both relations <*, <* are in T, where 

x<*y<=*x<EP& [y$PV<f(pc)<<p(y)]9 

x<*y*=*xGP& \y$P\Ztfx) <<&)]• 

If <IV. i G co> is a sequence of pointclasses with specified universal sets GfChlx 
X x X (i G co) and ^ = dpf / G co> is a sequence of norms (e.g. a semiscale on 
some P C X), we will naturally say that yt is a Yt-norm uniformly if we can ef­
fectively find for each i codes for <*. and <*. in I\. 

A pointset P C X is inductive if there is some R C co2 such that 

(1) *(*) ~ {(VooXBa^Vaa^Oa) • . . } (B^«5 0 ( ï ) , . . . . ö , , ^ , x(t))> 

where the at vary over W, < >, a and x and denote the usual (recursive) codings of 
tuples and the infinite string of alternating quantifiers is interpreted in the usual 
way via an open game on N. If we define the real-game quantifier O2 by its 
action 

(D2c*)P(x, a) <=> {(Va0X3a1)(Va2) . . . }P(x, <c*0, al9 . . . », 

then the inductive pointsets are clearly those in the class O2 Sj (= all 02P, with 
P G Sj). These are exactly the pointsets which are Sx-definable over W+ = R+ = 
the smallest admissible set which contains W or R = the true reals or again those 
pointsets which can be defined by positive elementary inductions over W, as in [4] 
and [6, Chapter 7] . 

Finally, let Zg be the pointclass of all Boolean combinations of inductive 
and coinductive sets and for n > 0, call P a %%-pointset if P satisfies 

P(x) <=» (3a1)(Va2)(3û!3) . . . (Qnan)R(pc, a19 a2, . . . , aM), 

where # is in 2£. Let S* = U n 2 * . 

THEOREM A (MOSCHOVAKIS). If every 2* game w determined, then every 
coinductive set P admits a scale <p = (y.: i G co> such that each y. is a 2f -norm, 
uniformly. 

OUTLINE OF PROOF. By the dual of (1) above, if P is coinductive, then 
we have an equivalence of the form 

(1*) ^ )^{ (3a 0 ) (V a i ) (3a 2 ) . . . }(Vt)R(<E0(0,«i(0, • • • . ö ^ G M O ) . 
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For each even nt put 

Pn(x, c*0, . . . , an_x) ~ {(3aM)(Va„+1)(3aw+2) . . . } 

(V^«50(0,*t(f)9 • • • > 5,-i(fl>, *(0), 

and for each odd n, put 

P„(x, a0, . . . , a ^ . i ) ^{(Va„)(3a„+ 1XVaw + 2 ) . . . } 

(W)*(MO> âx(0, • • • , «,_i(0>, 5(0), 

so that i> = P0 and 

(2) P I Ifea0 , . . . ,a l l_.1)«=>(3a l l)P I I + 1(jcfaó, ... 9<xn_l9an) (ifwiseven), 

(3) P„(x,a0 , . . . ,aw_1)<=^(Vaw)P„ + 1 (x ,û : 0 , . . . ,«„_! ,«„) (if/i is odd). 

The basic idea of the proof is to define simultaneously a sequence of norms <J7* = 
<<£? : i G co> on all Pn and then prove that each $n is a scale on Pw. We will naturally 
use the equivalences (2) and (3) and the constructions in the proof of the second 
periodicity theorem, 6C.1 and 6C.3 of [6]. The definition of <p" is by induction on i. 

Basis. For each ny put 

$ (* , a 0 , . . . , an_x) = 0 (ifPn(xf aQ9...,a^)). 

This norm is trivial as far as its values are concerned, but it has a coinductive domain 
and it is easily seen to be a 2$-norm, and in general no better. 

Induction step for even n. Let a = a 0 , . . . , an_ t to simplify notation, and 
using (2), put 

# + i f o 2) = infimum{<<^ + 1(*> a ,a„) , a„(0), $+1(x, a, an)9 a„(l), . . . , 

<p?+ *(x, a, a„(0>: ^„ +1(x> a, <*„)}> 

where of course ( , . . . , > is an order-preserving map of tuples of ordinals into 
the ordinals. 

Induction step for odd n. With the same notation convention and using (3), 
we now put 

tf+1(x, a) = "supremum" {<̂ g + 1fo a, an)9 a„(0), v>? + 1(*> <*, a„), aw(l), 

. . . , ^ + 1 ( x , a , a w ) , a M ( 0 > : a E W } , 

where of course we do not take the real supremum of the set of ordinals in braces, 
but the "fake supremum" determined by a game as in the proof of the second 
periodicity theorem 6C.3 of [6]. (Without repeating that construction, it will 
suffice to recall that a game Gi+1(x, a; y, (5 ) is defined for each x, a and y, 0 in 
Pn which involves the (i 4- l)st sequence of numbers u(i 4-1), the relation 

(x, a) < (y, |3) <=> II wins Gi+1(x, a;yj) 
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is shown to be a prewellordering on Pn, and </>"+1 is simply the rank function of 
that prewellordering.) 

We now have a sequence of norms ^ on each Pn and it is trivial to check 
that each $ is a Sf-norm, uniformly; that <p° is actually a scale on P0 (as is 
each <p" on Pn) follows by a careful analysis of the arguments in 6C.1 and 6C.3 
of [6] which we will not put down here. D 

Martin has proved under the same determinacy hypothesis that this theorem 
is best possible in the following sense: a universal coinductive set does not admit 
a 2*-scale for any n. 

2. The extent of scales in L(R). Consequences of determinacy hypotheses 
are often formulated as results about the inner model L(R) (= L(hl)), the smallest 
model of Zermelo-Fraenkel set theory which contains the reals R and all the or­
dinals. There are many good reasons for this, including the obvious fact that if 
there is any inner model of AD (full determinacy) which contains R, then L(R) 
is the smallest such model. It is generally believed that the hypothesis L(R) |= 
AD should settle most set-theoretic problems about Z,(R), just as ZF by itself 
settles most questions about L. 

A pointset P C X is 2* in L(R) if 

(4) P(x) <=> L(R) N QA C ht)Q(x, A\ 

where the relation Q is definable in the language of set theory with all quanti­
fiers restricted to W, so that it is absolute over L(R). 

THEOREM B (MARTIN, STEEL). A pointset P is X\ in L(R) if and only if 
it is D2U\, i.e. if and only if it satisfies an equivalence of the form 

(5) P{x) *** {OaoXVa^aa) . . . }R(x, <a0, al9 a2, . . . », 

where R is a U\ pointset. 

OUTLINE OF PROOF. For the nontrivial direction, suppose P is defined by 
(4) above and consider (for each x) the game G(x) on hi, where I plays a0, ax,. . . , 
II plays j30 , /?! , . . . and in addition II assigns a truth value to all the sentences 
of set theory with a0, ax, . . . , j30, j8j, . . . as parameters; II wins if he defines 
in this way the truth set of a (countable) model M whose reals are precisely a0, 
o c j , . . . , 0O, / ? ! , . . . , which is well founded and which further satisfies the for­
mal assertion 

' V = LOO" & OA)Q(x, A) & (V8[Z€(R) H OA)Q(x, A)]. 

If P(x) holds and K is the least ordinal such that LK(R) 1= OA)Q(x, A), then II 
can win G(x) by using Skolem functions for ZK(R); conversely, if II wins G(x), 
then his strategy can be used to construct Skolem functions for some LK(R) 
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which satisfies (3A)Q(x, A), so that we have 

P(x) <=» II wins G(x). 

The required representation for P follows from this since G(x) is clearly a II} 
game. D 

THEOREM C (MARTIN, STEEL). Assume V = L(R) & AD; then every %\ 
pointset P admits a X\ -scale and every pointset which admits a scale is lï\. 

OUTLINE OF PROOF. The second assertion was observed by Kechris and 
Solovay some time ago and follows (by a Wadge-type argument) from the fact 
that in Z,(R) some W\ set cannot be uniformized (granting AD). 

For the first assertion, by (5) above and the usual Shoenfield analysis of 
II} sets, we get a representation of the form 

P(x) <=* {3a0)(Va1)(3a2) . . . H ^ X ^ X ^ ) . . . > 

(Vt)S(x(t), <50(0, . . • , «,_!(0>, <£o> • • - È*-i» 

for P, and then by a simple open-game argument, we have 

P(x) <=> {(3a0)(3?0)(Va1)(3a2)(3|1)(Va3) _ } 

(VtysÇ(t)9 MO, . . . , ^ ( f » , %, . . . , ?,_!»; 

now this is very similar to the representation (1*) for coinductive sets and the 
method of Theorem A extends easily to construct a scale on P. It is not too 
hard to verify further that this is a S2-scale. D 

It is easy to check that in L(R), every nonempty E2 collection of pointsets 
must have a A\ member; thus by Theorem C, granting L(R) |= AD, if we can 
prove that every pointset P which admits a scale satisfies a TI\ assertion <p(JP), then 
£(R) 1= (VPypQP)- T h u s Theorem C lifts to all sets in L(R) many of the struc­
ture and regularity results which are known for scaled sets — for example the 
Ramsey property. 

3. Remarks and further results. Some of the arguments above (about games 
on M) appear to depend on the axiom of choice, but they can be easily reformu­
lated in ZF 4- Dependent Choices by interpreting game-assertions in terms of 
multiple-valued strategies. 

Steel has refined and extended considerably the proofs of Theorems A—C to 
obtain an almost complete analysis of the minimum complexity of a scale on a 
given pointset P in L(R), in terms of the fine structure of the constructible hier­
archy <L (̂R): ? E Ordinals). In another direction, Martin has shown that with 
natural determinacy hypotheses for games on M (stronger than AD), the real-
game quantifier D2 preserves scales and in fact so do the quantifiers which are 
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associated in the same way with games on W of any countable ordinal length. 
Martin's proof uses ideas from the proof of Theorem A and the third periodicity 
theorem 6E.1 of [6]. 

BIBLIOGRAPHY 

1. A. S. Kechris and Y. N. Moschovakis, (eds.), Notes on the theory of scales, Cabal Sem­
inar 76—77, Lecture Notes in Math., vol. 689, Springer-Verlag, Berlin and New York, 1978. 

2. D. A. Martin and R. M. Solovay, A basis theorem for 2 3 sets of reals, Ann. of 
Math. (2) 89 (1969), 138-160. 

3. Y. N. Moschovakis, Uniformization in a playful universe, Bull. Amer. Math. Soc. 
77 (1971), 731-736. 

4. ; Elementary induction on abstract structures, North-Holland, Amsterdam, 
1974. 

5. ; Inductive scales on inductive sets, Cabal Seminar Id—11, Lecture Notes 
in Math. vol. 687, Springer-Verlag, Berlin and New York, 1978, pp. 185-192. 

6. ; Descriptive set theory, North-Holland, Amsterdam, 1980. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS 
ANGELES, CALIFORNIA 90024 


