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It turns out that there exists a surprising connection between certain ideas 
from the areas listed in the title. In this announcement we try to briefly outline 
the connection and to state our principal results. Very roughly, we use concepts 
from formal language theory, group theory, and the theory of ends to investigate 
a class of graphs which we call context-free graphs. Using the results obtained and 
Rabin's theorem on the decidability of the monadic second-order theory of the 
infinite binary tree, we show that the monadic theory of any context-free graph is 
decidable. There are several classes of extensively investigated decision problems 
which are essentially problems on the grid of integer lattice points in n dimensions. 
We here have in mind various questions concerning tiling problems, cellular auto­
mata, and vector addition systems. Most of these problems are known to be un-
solvable in the classical case. We show that these problems all make sense on a 
very general class of graphs and are all solvable on any context-free graph. 

A finitely generated group can be described by a presentation G = (X; R) in 
terms of generators and defining relators. (All groups and presentations which we 
mention are assumed to be finitely generated.) The word problem of G is the set 
W(G) of all words on the generators and their inverses which represent the identity 
element of G. Anisimov [1] raised the question: "If W(G) is a context-free 
language in the sense of formal language theory, what can one say about the alge­
braic structure of GV9 We were led to conjecture that G has context-free word 
problem if and only if G has a free subgroup of finite index, and we have essen­
tially proven the conjecture. 

Our main tool is the theory of ends. Let T be the Cayley graph of a 
finitely-generated group G — <X;R). Let T ^ denote the subgraph of T consist­
ing of all vertices and edges connected to the identity by a path of length less 
than n. The number of ends of G is the limit as n goes to infinity of the number 
of infinite components of r V ^ . Stallings [4] proved that a group with more 
than one end has a particular structure in terms of certain group-theoretic con­
structions. We prove that an infinite group with context-free word problem has 
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more than one end. A group G is accessible if it cannot be decomposed arbitrarily 
often using the constructions mentioned in Stalling's theorem. 

THEOREM 1. A finitely generated group G is free if and only if G has context-
free word problem and is torsion-free. A finitely generated group G has a free sub­
group of finite index if and only if G has context-free word problem and is ac­
cessible. 

A finitely-generated graph is a connected labelled graph V with a vertex v0 

chosen as origin and with a fixed upper bound on the degrees of vertices. We 
assume that the labels on the edges of F come from a finite label alphabet 2 . As 
before, we use T ^ to denote the subgraph of T consisting of all vertices and 
edges connected to v0 by a path of length less than n. If C is a connected com­
ponent of r\r*w) a frontier point of C is a vertex of C having distance n from v0. 
If C is a component of r\r*w) and C' is a component of r \r*m ) we say that C 
and C' are end-isomorphic if there is a label-preserving graph isomorphism be­
tween C and C' which takes frontier points to frontier points. A finitely-gen­
erated graph T is context-free if there are only finitely many isomorphism types 
under end-isomorphism. (For example, consider the infinite fc-ary tree which is a 
tree with origin u0 and k distinct edges labelled ot, . . . , ok leaving each vertex. 
There is only one isomorphism type since, regardless of n, a component of r \ T ^ 
is isomorphic to the whole tree.) The class of machines associated with the class 
of context-free languages is the class of pushdown automata. If M is a pushdown 
automaton it is possible to associate with M a finitely generated graph F(M) 
whose vertex set is the set of possible total states of M and whose edges indicate 
transitions. 

THEOREM II. A graph F is context-free if and only if F is the graph of a 
pushdown automaton. 

A powerful positive result concerning decision problems in logic is Rabin's 
theorem [3] that the monadic second-order theory of the labelled «-ary tree is 
decidable. In this language individual variables represent vertices. If E = 
{aj, . . . , on} and w is a word on 2 and x is an individual variable, then xw 
represents the unique vertex obtained by starting at x and following the path with 
label w. One has set variables representing sets of vertices and the G-relation of 
set membership. One forms sentences by using quantifiers and logical connectives 
in the usual way. The great power of the language is that one can quantify over 
sets. 

One can define a very similar language for any finitely-generated graph r . 
If T is labelled from the finite alphabet 2 and w is a word on 2, then xw denotes 
the set of vertices obtainable by starting at x and tracing out a path with label w. 
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Thus xw now denotes a finite set. We think of individual variables as denoting 
singleton sets and take the set inclusion relation, C, as basic. 

THEOREM III. If F is any context-free graph then the monadic second-
order theory of F is decidable. 

Very roughly, one proves Theorem III in the following way. Questions 
about the monadic second-order theory of F are equivalent to questions about 
certain tiling problems on the graph T. Using heavily the fact that F is the graph 
of a pushdown automaton M of special type, one can reduce questions about 
tilings of T to questions about tilings of a tree Tr associated with M and then 
reduce the problems on TT to problems about tiling a full fc-ary tree Sr and apply 
Rabin's theorem to solve the problems. 

In von Neumann's conception of a cellular automaton, there are identical 
finite state automata at the integer lattice points of «-dimensional space. A 
neighborhood set N is specified. (Without loss of generality, one can take N to 
consist of a vertex together with the other vertices connected to it by a single 
edge.) The next state of any particular automaton depends on the states of the 
automaton and its neighbors. Each automaton thus changes state according to 
the same local transition function S. A state of the universe is an assignment of 
a state from Q to each automaton. Let D denote the set of all possible states of 
the universe. The local transition function 5 induces a global transition function 
A: D —> D. One is interested in whether or not A is surjective or injective. 
Whether or not these questions are algorithmically decidable in the classic case has 
not been settled, but they are almost surely undecidable. 

One can imagine a cellular automaton whose underlying universe is a con­
text-free graph T. Suppose that TV is a finite labelled graph with a vertex r dis­
tinguished as the root of N such that for each vertex v of F there is a unique 
labelled graph embedding (pv: N —• r with 0v(r) = v. Then we can consider cell­
ular automata whose underlying universe is F and which have neighborhood set N. 

THEOREM IV. Let F be a context-free graph with neighborhood set N. 
Then there is an algorithm which decides, when given a state set and a local tran­
sition function, whether or not the global transition function is surjective (or in­
jective). 

Finally, we turn to problems associated with vector addition systems. In 
the standard formulation, an «-dimensional vector addition system consists of a 
finite set U of «-dimensional integer vectors (i.e., integer «-tuples). Note that if 
u G U, then -u need not be in U. As usual, the first quadrant of Zn consists of 
vectors all of whose entries are nonnegative. If z is a point of the first quadrant, 
the reachability set of z with respect to U, denoted by Uz, consists of the points 
v which can be obtained from z by successively adding vectors in U while staying 
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within the first quadrant. Precisely, v G Uz if there exists a sequence z = vl, . . . , 
vk = v where each vt is in the first quadrant, and, for i = 1,... ,k- 1,there 
exists a u{G U such that i>/+1 = vt + uv The membership problem for the vec­
tor addition system U asks for an algorithm which, when given points z and u of 
the first quadrant, decides if y G Uz. It is not presently known if the member­
ship problem is always solvable. 

The inclusion problem for reachability sets asks for an algorithm which, 
when given two «-dimensional vector addition systems U1 and U2 and two points 
zt and z2 in the first quadrant, decides whether or not Uxzx C U2z2. Rabin has 
proved that the inclusion problem isunsolvable. (See Hack [2].) 

The idea of a vector addition system makes sense on an arbitrary finitely-
generated graph T labelled by an alphabet 2 . Let t be a vertex of T and let W be 
a finite set of words of 2 . The quadrant tW of t with respect to W consists of 
all vertices tn such that there is a finite sequence v = tv t2, . . . , tn where for 
each / = 1 , . . . , « - 1 , there exists a wf G W with ti+ x G ^wz- (where t-w. de­
notes the set of all vertices obtainable by starting at tt and tracing out a path with 
label Wf). A vector addition system on r consists of a vertex ƒ and two finite 
sets W and £/ of words of 2 . If z G /W, the reachability set Uz of z with respect 
to t/, consists of all vertices s such that there is a sequence z = sl9 . . . , sk = s 
with each ^ G ƒW and for each / = 1, . . . , k - 1 there is a u.G U with si+ j G 
Sji/f. The membership and inclusion problems can now be formulated in the 
obvious way. 

THEOREM V. Let F be a context-free graph. Then the membership and 
inclusion problems for vector addition systems on F are uniformly solvable. 

The proof of the last two theorems consists of showing that the problems 
are expressible as sentences in the monadic second-order theory of the underlying 
graph T. 
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