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RESEARCH ANNOUNCEMENTS 

DEFINABLE DEGREES AND AUTOMORPHISMS OF V 

BY LEO HARRINGTON AND RICHARD A. SHORE1 

The basic notion of relative computability, i.e. of one function a: N —> N 
being computable from another 0, defines, in the obvious way, first an equiva­
lence relation a = jS on functions and then a partial ordering <, called Turing re-
ducibility, on the equivalence classes, called Turing degrees. The analysis of the 
structure V of these degrees has been a central topic in recursion theory beginning 
with the papers of Post [1944] and Kleene and Post [1954]. We will here deal 
with a number of global or second order questions about V of the sort first raised 
in Rogers [1967a] and since then reiterated by many others. In particular we 
will show that many degrees and relations on them are definable purely in terms 
of the ordering answering some questions from Simpson [1977]. Our results 
also impose severe limitations on possible automorphisms of P. Indeed every 
sufficiently large degree is fixed under every automorphism. (This answers ques­
tions from Rogers [1967a], Simpson [1977a] and others.) By applying our 
methods to the principal filters (or cones) of V we can also considerably improve 
the solution to the homogeneity problem of Rogers [1967] given in Shore [1979] 
and [1981]. These results are all derived by combining a strengthening of Har­
rington and Kechris [1975] with the results and methods of Nerode and Shore 
[1979] and [1980] and Shore [1979], [1981]. As in these latter papers a cru­
cial role is played by the results of Jockusch and Soare [1970] on minimal covers 
and Lachlan [1968] on initial segments of p. 

LEMMA 1. If the Turing degree x is not hyperarithmetic and x, 0 < t 
then there is a degree s such that t is a minimal cover of s and x ^ s. 

PROOF. Our starting point is the proof of Harrington and Kechris [1975] 
that every ÏI® set of reals A such that every hyperarithmetic real is recursive in 
some member of A contains reals of every Turing degree above 0. Let A = 
{<a0, ot, r0 , Ti)\ol is a witness to the fact that every partial II} function has a 
total extension recursive in a0 and rx is the Skolem function witnessing that r0 
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is the minimal cover of o = <a0, ot) given by the construction of Sacks [1963] }. 
As the desired property for a0 is S J and Sacks' construction gives a unique r0 

which is A° in a, A is a n° set of reals. Consider now the game Harrington and 
Kechris associate with this set. We let I play initial segments of the various reals 
he is constructing but require that at each move the part of r = <r0, TX) played 
so far can be seen to be on the appropriate tree recursive in a using only the 
amount of a played so far. This amount of o should also suffice to verify the 
other conditions on Ps play. We also require II to play a characteristic function. 

Suppose a results from a play of this game in which I follows the winning 
strategy of never moving to a position at which II has a winning strategy (a 2} 
set of nodes). His play also produces r, a minimal cover of a. We claim that if 
{e}° is total then at infinitely many positions py I can, for each k, move to posi­
tion q so as to force {e}°^q^(k) to converge. (a[q] is the initial segment of a 
determined by position q.) If not, we may as well assume that there are no such 
positions p. The relation that says that no winning move from p can force con­
vergence at k is n | . It can therefore be uniformized by a n} function and so 
there is a function ƒ recursive in a extending the uniformization. By our defini­
tion of A our play produces a r = (T0,T1) which is on a tree recursive in the a 
produced. We can now use this function ƒ to prune the tree down to a finitely 
branching one. The point is that at any node p with I to move we calculate/(p) 
and then find the amount n of o needed to compute {e}°(ƒ(/?)). I can then 
only play initial segments of a of length < n. This puts a finite bound on the 
possible number of extensions he can make to r at this move. As II can play 
only a 0 or 1 at his move we have a class which is n^ in a and recursively bounded 
in o consisting precisely of the actual play of the game producing a. Thus the 
entire play and so r would be recursive in a. This is the contradiction that es­
tablishes our claim. 

Consider now any t > 0. We let II play a characteristic function in t. I 
plays to win of course but in addition at each move from any position p he asks for 
each e <p not yet taken care of if he can find, for every k, winning moves which 
force {e}°(k) to converge. This question can be answered for each e < p recur­
sively in 0 and so in t. If there is such an e < /th p he chooses the least one 
and takes care of it as follows: If there are two possible moves giving different 
values to {e}°(k) for some k then he chooses one that makes {e}°(k) ¥* X(k). 
If not then {e}° must be hyperarithmetic and so again is not in x. Following 
this procedure I produces reals including a and r with r E t a minimal cover of 
o. Moreover if {e}a is total then by our claim we could take care of it at in­
finitely many moves during the game. Thus after we have finished with all e <e 
for which we ever act we eventually take case of e and so guarantee that x ^ a. 

Lemma 1 together with Jockusch and Soare [1970] enables us to define a 
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jump ideal caught between those of the arithmetic degrees A and the hyperarith-
metic ones tf. 

LEMMA 2. C = {x|3y [x < y & Vz(z V y is not a minimal cover of z)]} is 
a jump ideal with A Q C £ f/. 

The methods of §2 of Nerode and Shore [1980] can now be used to prove 
the following theorems. 

THEOREM 3. Every degree and relation on degrees above all the hyper-
arithmetic degrees is definable in V iff it is definable in second order arithmetic. 

THEOREM 4. Relations invariant under joining with an arbitrary hyper-
arithmetic degree such as "hyperarithmetic in", "hyperjump of "and "construct­
ible in " are definable in V. 

The relativized versions of the lemmas also show that if 0 is an isomorphism of 
cones V (> a) —-* V (> b) then the image of every degree arithmetic in a is hy­
perarithmetic in b. Combining this with initial segment results as in Nerode and 
Shore [1980, §4] or Shore [1979] we get the following results. 

THEOREM 5. If V (> a) s V (> b) then a =h b. 

THEOREM 6. Every automorphism of V is the identity on every degree 
above all the hyperarithmetic ones. 

Finally using the coding methods of Nerode and Shore [1980] and Shore 
[1981] we can go from isomorphism results to ones on elementary equivalence. 

THEOREM 7. If V (> a) = V then a is hyperarithmetic. 
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