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Control theory was brought into existence during the second half of the 
eighteenth century by the development of complex machinery such as the 
steam engine. Since that time until about 1900 it was primarily concerned 
with elimination of undesirable traits (chiefly instability) by means of feed­
back devices, the Watt governor being a notable example; design was mainly 
the result of intuition and empirical insights. The beginning of the theory can 
be traced to J. C. Maxwell's celebrated paper on governors [1]. Progress was 
slow during the nineteenth century but became faster after 1900 due to the 
development of power transmission, communications and complex processing 
plants and some mathematical techniques (such as the Routh-Hurwitz stabil­
ity criteria) began to be systematically used. Growth was enormous during 
and after the second World War and many other mathematical tools like 
Laplace transforms and probability theory found applications. In the late 
fifties and early sixties, starting with the work of Bellman, Glicksberg and 
Gross [2], Bellman [3], Pontryagin, Boltyanskiï, Gamkrelidze and Mischenko 
[4], Kalman [5], Kalman and Bucy [6] and others, control theory began to be 
accepted as a respectable mathematical discipline. It also started to absorb 
relatively sophisticated "modern" mathematics into its language (for instance 
measure theory, elementary functional analysis, abstract algebra and 
Liapunov stability theory) and brought to the forefront the idea of quality of 
control: if the control engineer was content in the past, say, with rendering 
stable the operation of a machine by means of a feedback device his modern 
counterpart would try to achieve the same effect in a suitably optimal way 
(for instance, minimizing the stabilization time, the cost of the control device, 
the strain on the machinery, etc.). Finally, concepts like controllability, 
observability and stabilization by feedback, until then living in a latent state 
in the literature were given precise formulations. 

Although many of the initial contributions to the mathematical theory of 
control were firmly rooted in reality (for instance, the influence of [3] and [6] 
in modern technology was and is enormous) control theory tended to develop 
along two parallel lines since the early sixties. The first is practiced by 
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mathematicians, relies on mathematics that the average engineer considers 
esoteric and (at least in some cases) has tended to produce more general 
theory than solutions of particular problems. On the positive side, it has 
brought to light connections (such as that between optimal control theory and 
classical variational calculus), it has clarified many concepts and eliminated 
duplication. The second line inherits the classical approach and stresses the 
need for solving real problems, some times neglecting the search for general 
principles and ignoring the difference between an heuristic argument and a 
proof. It must be recognized of course that here, as in almost all areas of 
applied science, mathematics lags behind the applications. Although the 
overlap of these two fields of research is considerable, a great part of the 
literature can be easily placed in one (and only one) of them. 

This is not the case with the book under review. In spite of its title, I 
believe it will be of interest both to mathematicians and engineers. The author 
is a mathematician and a practitioner of control theory and both qualifica­
tions are obvious throughout the book. Proofs are complete and correct (as 
well as elementary and self-contained when possible) but concrete problems 
are never out of sight and the actual design and implementation of control 
devices, including computation of all parameters involved is stressed at all 
times. The mathematical demands on the reader do not go much beyond 
linear algebra and multivariable calculus; all that is needed from the theory 
of differential equations can be found in Chapter I and the Lebesgue integral 
can be dispensed with if one is willing to accept on faith a few existence 
statements. Some acquaintance with probability may be necessary in Chapter 
VI but all nonelementary facts needed (such as those from the theory of 
stochastic differential equations) are carefully introduced and explained. 

The book considers exclusively control systems described by systems of 
ordinary differential equations. For the most part these systems are determin­
istic, but stochastic systems (in particular, deterministic systems where the 
state is corrupted by white noise) are studied at length in Chapter VI. The 
equations are mostly linear, but there are several exceptions; controllability of 
a nonlinear system near an equilibrium point is found in Chapter II and some 
results on global controllability are given in Chapter IV. The treatment of 
optimal control problems is chiefly restricted to linear systems with quadratic 
performance criteria, both in finite and infinite time intervals for determinis­
tic and stochastic systems, although the dynamic programming method for a 
general optimal control problem is briefly expounded in Chapter IV. A great 
deal of attention is given to computational methods, especially in Chapter V 
where numerical solution of the quadratic matrix equations arising from 
linear-quadratic problems is discussed at length. 

An especially attractive feature of this book is the nice balance between the 
classical and the abstract. For instance, after controllability and observability 
are given a suitably elementary treatment an abstract version of these 
concepts (due to Doleckiï and Russell) is introduced; the reader who knows 
(or is willing to learn) a few elementary facts on operators in Hubert space 
will be able to understand the subject in a deeper and more transparent 
fashion. Another is the awareness, obvious in many places but especially in p. 
93 of the divergent points of view of the engineer and the mathematician 
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about what is meant by "optimal". Finally, mention should be made of the 
excellent collection of exercises, some of them challenging numerical projects 
involving access to a high speed computer. 

There are not many references in the literature where one can learn of real 
control problems without undue strain on credibility. This book is one of 
them. 
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Basic set theory, by Azriel Levy, Springer-Verlag, Berlin, Heidelberg, New 
York, 1979, xiv + 391 pp., $24.90. 

Perhaps the greatest obstacle in teaching elementary set theory is the 
mathematical logic needed to formalize the axioms. There is nothing inher­
ently difficult about the basic material-the theory of ordinal and cardinal 
numbers, and the axiom of choice-which every mathematician is expected to 
know. And most of the axioms of ZF, the system of Zermelo and Fraenkel 
used most frequently nowadays, can be stated easily and understandably in 
English. The exception is the axiom scheme of replacement, which when 
formalized looks like this 

V*! • • • Vxn(Vx Vy \/z(<p(x,y, xv...9 xn) A <p(x, z,xl9..., xn) -*y - z) 
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Here <p stands for a formula of the first-order language of set theory; each 
such <p yields a new instance of the axiom scheme, so there are infinitely 
many axioms. 

Now the idea behind the replacement scheme is quite simple: any corre­
spondence carries sets to sets. The problem is how the "correspondence" is to 
be specified. The solution, of course, is that the correspondence must be 
definable from parameters in a way which could be formalized in first-order 
logic. Unfortunately, many students do not find this completely clear. 

Nor is this the only such problem. To take another example, each instance 
of the principle of definition by transf inite recursion is usually quite clear, yet 
the formalization of the principle itself (as a theorem scheme) is often 
confusing. 


