ON THE UNION OF SETS OF SYNTHESIS AND DITKIN'S CONDITION IN REGULAR BANACH ALGEBRAS

BY AHARON ATZMON

The questions have been raised, whether for every commutative semisimple regular Banach algebra with unit, the union of two sets of synthesis is again a set of synthesis, whether every set of synthesis is a Ditkin set, and whether a singleton which is of synthesis is a Ditkin set (cf. [4, pp. 31, 34, 41] and [2, p. 225]). The purpose of this note is to show that for the Banach algebra obtained by adjoining a unit to the Banach algebra introduced by Mirkil in [3], the answer to all three questions is in the negative. In fact Mirkil's proof of his main result [3, §5] contains implicitly a negative answer to the third (and therefore also to the second) question. Mirkils algebra M is defined as follows: Let T denote the circle group identified with the interval $[-\pi, \pi)$, the group operation being addition modulo 2π . M is the convolution algebra of all functions in $L^2(T)$ which are continuous on the interval $[-\pi/2, \pi/2]$ with norm defined by

$$||f|| = ||f||_2 + \sup\{|f(t)|: |t| \le \pi/2\}.$$

(We recall that the convolution of two functions, f, g in $L^2(T)$ is defined by

$$f * g(t) = \frac{1}{2\pi} \int_{\mathbf{T}} f(t - x)g(x) dx, \ t \in T.$$

As shown in [3], M is a Banach algebra in which the trigonometric polynomials are dense, whose regular maximal ideal space can be identified with the set of integers \mathbf{Z} , and its Gelfand representation is given by the Fourier transform $f \longrightarrow \hat{f}$ where $\hat{f}(n) = (1/2\pi) \int_{\mathbf{T}} f(x) e^{-inx} dx$, $n \in \mathbf{Z}$.

We shall denote by $\mathbf{M_1}$ the Banach algebra obtained by the standard adjunction of unit to \mathbf{M} ($\mathbf{M_1}$ can also be regarded as the convolution algebra $M \oplus \mathbf{D}$ where \mathbf{D} is the one dimensional vector space spanned by the unit point measure concentrated at τ). The maximal ideal space of $\mathbf{M_1}$ can be identified with $\mathbf{Z} \cup \{\infty\}$, the one point compactification of \mathbf{Z} .

We refer to [2, p. 230] for the definitions of sets of synthesis for regular Banach algebras (see also [4, p. 28] where these sets are called Wiener sets). We shall give here the definition directly for the algebras M and M_1 .

Let M* denote the dual space of M. For every ν in M^* we set $\hat{\nu}(n) =$

Received by the editors June 26, 1979.

 $\overline{\langle e^{inx}, \nu \rangle}$, $n \in \mathbb{Z}$, and define the spectrum of ν to be the set

$$\sigma(\nu) = \{ n \in \mathbb{Z} : \hat{\nu}(n) \neq 0 \}.$$

Every function g in $L^2(T)$ defines an element of M* by the mapping

$$f \longrightarrow \langle f, g \rangle = \frac{1}{2\pi} \int_{\mathbf{T}} f(x) \overline{g(x)} \, dx, \quad f \in \mathbf{M}$$

We shall denote this element also by g.

DEFINITION 1. A set $E \subset \mathbf{Z}$ is called a set of synthesis for \mathbf{M} if every element in \mathbf{M}^* with spectrum contained in E, is in the w^* closure of the vector space spanned in \mathbf{M}^* by the set $\{e^{inx}: n \in E\}$. By the Hahn-Banach theorem, this is equivalent to the requirement that $\langle f, v \rangle = 0$ for every pair $v \in \mathbf{M}^*$ and $f \in \mathbf{M}$ such $\sigma(v) \subset E$ and $\hat{f} = 0$ on E.

DEFINITION 2. A closed set $K \subset \mathbf{Z} \cup \{\infty\}$ is called a set of synthesis for \mathbf{M}_1 if the set $K \cap \mathbf{Z}$ is of synthesis for \mathbf{M} .

Since the trigonometric polynomials are dense in M, the empty set is of synthesis for M, and therefore by Definition 2, the singleton $\{\infty\}$ is of synthesis for M_1 . (It is easy to see that the usual definition of sets of synthesis for regular Banach algebras given in [2, p. 230] coincides, for the algebra M_1 , with Definition 2.)

It is clear that the algebra M is semisimple and regular and therefore the same is true for the algebra M_1 .

We refer to [4, p. 30] for the definition of Ditkin sets (called there Wiener-Ditkin sets) for regular Banach algebras. We only note here that the condition for $\{\infty\}$ to be a Ditkin set for \mathbf{M}_1 , is equivalent to the requirement that for every function f in \mathbf{M} there exists a sequence of trigonometric polynomials $(p_n)_{n=1}^{\infty}$ such that $p_n * f \longrightarrow f$ in the norm of \mathbf{M} .

In what follows, we denote for every pair of integers r and s by $r\mathbf{Z} + s$ the set of all integers of the form rn + s, $n \in \mathbf{Z}$. The negative answers to the questions mentioned, is contained in the following.

THEOREM. (a) The sets $K_1 = 4\mathbf{Z} \cup \{\infty\}$ and $K_2 = 4\mathbf{Z} + 2 \cup \{\infty\}$ are of synthesis for \mathbf{M}_1 but the set $K_1 \cup K_2$ is not of synthesis for \mathbf{M}_1 .

(b) The singleton $\{\infty\}$ is not a Ditkin set for M_1 .

PROOF OF (a). We have to show that the sets $E_1 = 4\mathbf{Z}$ and $E_2 = 4\mathbf{Z} + 2$ are of synthesis for \mathbf{M} but the set $2\mathbf{Z} = E_1 \cup E_2$ is not of synthesis for \mathbf{M} . For this we need first to identify the dual space \mathbf{M}^* . Let $C[-\pi/2, \pi/2]$ denote as usual the Banach space of complex continuous functions on $[-\pi, \pi/2]$ with the sup norm, and consider the Banach space $\mathbf{B} = L^2(\mathbf{T}) \times C[-\pi/2, \pi/2]$ with norm $\|(f, h)\| = \|f\|_2 + \|h\|_{C[-\pi/2, \pi/2]}$. Noticing that the mapping

$$f \longrightarrow (f, f_{|[-\pi/2,\pi/2]}), \quad f \in \mathbf{M}$$

(where $f_{\lfloor \lfloor -\pi/2,\pi/2 \rfloor}$ denotes the restriction of f to $\lfloor -\pi/2,\pi/2 \rfloor$) is an isometric isomorphism of M onto a closed subspace of B, using the Hahn Banach theorem, the fact that $B^* = (L^2(T))^* \times C^*[-\pi/2,\pi/2]$, and the known representations of the dual spaces of $L^2(T)$ and $C[-\pi/2,\pi/2]$, we see that every element ν in M^* can be represented by a Borel measure on T (which we also denote by ν) which admits a decomposition of the form $\nu = gdx + \mu$ where $g \in L^2(T)$ and μ is a Borel measure supported on $[-\pi/2,\pi/2]$, and the action of ν on M is given by

$$\langle f, \nu \rangle = \frac{1}{2\pi} \int_{\mathbf{T}} f(x) \overline{g(x)} \, dx + \int_{\mathbf{T}} f(x) \, d\overline{\mu}(x), \quad f \in \mathbf{M}$$

Clearly $\|\nu\|_{\mathbf{M}^*} \leq \max\{\|g\|_2, |\mu|(\mathbf{T})\}$ where $|\mu|(\mathbf{T})$ is the total variation of μ . Suppose now that $\nu = gdx + \mu \in \mathbf{M}^*$ with g and μ as described above, and assume that $\sigma(\nu) \subset E_1 = 4\mathbf{Z}$. Then $\widehat{\nu}(n) = \int_{\mathbf{T}} e^{-int} d\nu(t) = 0$ for $n \notin 4\mathbf{Z}$ and therefore for every trigonometric polynomial p

$$\int_{\mathbf{T}} p(t + \frac{\pi}{2}) d\nu(t) = \int_{\mathbf{T}} p(t) d\nu(t),$$

and since a continuous function on **T** is the uniform limit of trigonometric polynomials, the equality remains true if p is replaced by any such function. This shows that ν is a measure of period $\pi/2$, that is, $\nu(S+\pi/2)=\nu(S)$ for every Borel set $S\subset \mathbf{T}$. On the other hand, since μ is supported on $[-\pi/2, \pi/2]$, $\nu(S)=\int_S \overline{g(x)}\,dx$ for every Borel set $S\subset [0,\pi/2)$. Combining these facts we see that ν is in $L^2(\mathbf{T})$, and therefore setting $S_N(\nu)=\sum_{n=-N}^N \hat{\nu}(n)e^{inx}$, $N=0,1,\ldots$, we deduce that

$$\|v - S_N(v)\|_{\mathbf{M}^*} \le \|v - S_N(v)\|_2 \longrightarrow 0$$
 as $N \longrightarrow \infty$.

This shows that every element in \mathbf{M}^* with spectrum contained in E_1 , is even in the norm closure in M^* , of the vector space spanned in M^* by the set $\{e^{inx}:$ $n \in E_1$ }, and therefore E_1 is of synthesis for M. To show that $E_2 = 4\mathbf{Z} + 2$ is also a set of synthesis for M, consider a measure ρ in M* with spectrum in E_2 ; then the spectrum of the measure $e^{2ix}\rho$ is in E_1 , hence by the previous part of the proof this measure is in $L^2(T)$, and therefore ρ is also in $L^2(T)$. This implies as before, that E_2 is of synthesis for **M** (even in the norm topology of M^*). The remaining assertions of the theorem follow from the main result in [3]. For the sake of completeness we include here a different proof which is more in line with the approach of this paper. To show that the set $E = E_1 \cup E_2$ is not of synthesis for M, consider the element of M* defined by the measure $\mu = \delta_{\pi/2} + \delta_{-\pi/2}$ (for every $\tau \in T$, δ_{τ} denotes the unit point measure concentrated at τ) and the function f in M defined by: f(x) = 1 for $|x| \le \pi/2$ and f(x) = -1 for $\pi/2 < \pi/2$ $|x| \le \pi$. Then $\hat{\mu}(n) = 2\cos(n\pi/2)$, $\forall n \in \mathbb{Z}$, $\hat{f}(n) = 2\sin(n\pi/2)/n\pi$, for $n \in \mathbb{Z} \setminus \{0\}$, and $\hat{f}(0) = 0$. Thus $\sigma(\mu) \subset E$ and $\hat{f} = 0$ on E, but $\langle f, \mu \rangle = 2$, and therefore E is not a set of synthesis for M.

PROOF OF (b). To show that $\{\infty\}$ is not a Ditkin set for \mathbf{M}_1 , consider again the measure μ and the function f defined above. Noticing that $\langle q, \mu \rangle = 0$ for every trigonometric polynomial q such that $\hat{q} = 0$ on $2\mathbf{Z}$, we obtain for every trigonometric polynomial p (by using the identity $p * f = \sum_{n=-N}^N \hat{p}(n) \hat{f}(n) e^{inx}$, where N is the degree of p) that

$$||f - p * f||_{M} \ge ||\mu||_{M^*}^{-1} \langle f - p * f, \mu \rangle = 1$$

and consequently $\{\infty\}$ is not a Ditkin set for M_1 .

REMARK. The proof of the theorem shows that the sets K_1 and K_2 are of synthesis for M_1 even in the norm topology of M_1^* but $K_1 \cup K_2$ is not of synthesis for M_1 even in the w^* topology of M_1 .

The answers to the first and second questions mentioned at the beginning are not known for group algebras of locally compact noncompact abelian groups; in particular they are not known for the group algebra of **Z**. A discussion of these problems and partial results can be found in [1, Chapter 1 and 2], [4, Chapters 2 and 6] and [5, Chapter 7].

REFERENCES

- 1. J. Benedetto, Spectral synthesis, B. G. Teubner, Stuttgart, 1975.
- 2. Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968.
- 3. H. Mirkil, A counterexample to discrete spectral synthesis, Composito Math. 14 (1960), 269-273.
- 4. H. Reiter, Classical harmonic analysis and locally compact groups, Calderon Press, Oxford, 1968.
 - 5. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

DEPARTMENT OF MATHEMATICS, TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, TECHNION CITY, HAIFA, ISRAEL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109