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ON THE UNION OF SETS OF SYNTHESIS 

AND DITKIN'S CONDITION IN REGULAR BANACH ALGEBRAS 

BY AHARON ATZMON 

The questions have been raised, whether for every commutative semisimple 
regular Banach algebra with unit, the union of two sets of synthesis is again a 
set of synthesis, whether every set of synthesis is a Ditkin set, and whether a 
singleton which is of synthesis is a Ditkin set (cf. [4, pp. 31, 34, 41] and [2, p. 
225] ). The purpose of this note is to show that for the Banach algebra obtained 
by adjoining a unit to the Banach algebra introduced by Mirkil in [3], the answer 
to all three questions is in the negative. In fact Mirkil's proof of his main re­
sult [3, §5] contains implicitly a negative answer to the third (and therefore also 
to the second) question. Mirkils algebra M is defined as follows: Let T denote 
the circle group identified with the interval [—TT, 7r), the group operation being 
addition modulo 2ir. M is the convolution algebra of all functions in L2(T) which 
are continuous on the interval [—TT/2, n/2] with norm defined by 

II ƒ II = il f\\2 + sup{| ƒ(*)!: U K TT/2}. 

(We recall that the convolution of two functions, ƒ, g in L2(J) is defined by 

f *&) = £; ƒ f(t~x)g(x)dx, ter,) 

As shown in [3], M is a Banach algebra in which the trigonometric poly­
nomials are dense, whose regular maximal ideal space can be identified with the 
set of integers Z, and its Gelfand representation is given by the Fourier transform 
ƒ - * ƒ where f(n) = (1/2TT)/T f(x)e~inxdx, nGZ. 

We shall denote by Mt the Banach algebra obtained by the standard adjunc­
tion of unit to M (M j can also be regarded as the convolution algebra M © D 
where D is the one dimensional vector space spanned by the unit point measure 
concentrated at r). The maximal ideal space of Mx can be identified with Z U 
{<*>}, the one point compactification of Z. 

We refer to [2, p. 230] for the definitions of sets of synthesis for regular 
Banach algebras (see also [4, p. 28] where these sets are called Wiener sets). We 
shall give here the definition directly for the algebras M and Mt. 

Let M* denote the dual space of M. For every v in M * we set v(n) = 
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(einx, ^ > , n G Z , and define the spectrum of v to be the set 

O(P)= {neZ:v(n)^0}. 

Every function g in L2(T) defines an element of M * by the mapping 

f-+(f,g) =± J T mlöödx. ƒ e M. 

We shall denote this element also by g 

DEFINITION 1. A set E C Z is called a set of synthesis for M if every ele­
ment in M* with spectrum contained in E, is in the w* closure of the vector 
space spanned in M * by the set {einx: nEE}. By the Hahn-Banach theorem, 
this is equivalent to the requirement that <ƒ, v) = 0 for every pair P G M * and 
ƒ E M such o{y) C E and ƒ = 0 on E. 

DEFINITION 2. A closed set K C Z U {«>} is called a set of synthesis for 
Mj if the set K C\ Z is of synthesis for M. 

Since the trigonometric polynomials are dense in M, the empty set is of 
synthesis for M, and therefore by Definition 2, the singleton {°°} is of synthesis 
for M r (It is easy to see that the usual definition of sets of synthesis for regular 
Banach algebras given in [2, p. 230] coincides, for the algebra M1? with Defini­
tion 2.) 

It is clear that the algebra M is semisimple and regular and therefore the 
same is true for the algebra Mx. 

We refer to [4, p. 30] for the definition of Ditkin sets (called there Wiener-
Ditkin sets) for regular Banach algebras. We only note here that the condition 
for {<*>} to be a Ditkin set for M15 is equivalent to the requirement that for every 
function ƒ in M there exists a sequence of trigonometric polynomials (pw)^= j 
such that pn * ƒ —• ƒ in the norm of M. 

In what follows, we denote for every pair of integers r and s by rZ + s the 
set of all integers of the form rn 4- s, n G Z. The negative answers to the ques­
tions mentioned, is contained in the following. 

THEOREM, (a) The sets Kt = 4Z U {«>} and K2 = 4Z + 2 U {«>} are of 

synthesis for Mt but the set Kx U K2 is not of synthesis for M r 

(b) The singleton {<*>} is not a Ditkin set for Mv 

PROOF OF (a). We have to show that the sets Et = 4Z and E2 = 4Z + 2 
are of synthesis for M but the set 2Z = Ex U E2 is not of synthesis for M. For 
this we need first to identify the dual space M*. Let C[-7r/2,7r/2] denote as 
usual the Banach space of complex continuous functions on [—n, IT 12] with the 
sup norm, and consider the Banach space B = L2(J) x C[-TT/2, TT/2] with norm 
IK f h)\\ = || f\\2 + IIA|lc[-w/2,w/21 • Noticing that the mapping 

f-+(f>f\[-w/2tn/2])> fEM 
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(where/jr 7Tf2,7r/2) denotes the restriction of f to [-rr/2, n/2]) is an isometric 
isomorphism of M onto a closed subspace of B, using the Hahn Banach theorem, 
the fact that B* = (X2(T))* x C*[-7r/2, IT/2] , and the known representations 
of the dual spaces of L2(T) and C[~TT/2, TT/2], we see that every element v in 
M* can be represented by a Borel measure on T (which we also denote by v) 
which admits a decomposition of the form v = gdx 4- p where g G L2(T) and p 
is a Borel measure supported on [—TT/2, 7r/2], and the action of v on M is 
given by 

<ƒ, *>> = -L ƒ f(x)ÏQc)dx + ƒ ƒ(*) tfp (x), ƒ G M. 

Clearly IMIM* < max{||g||2, Ipl(T)} where |p| (T) is the total variation of p. 
Suppose now that v = geftc 4- p G M* with g and p as described above, and as­
sume that o(v) CEt= 4Z. Then 9(n)= fT e~intdv{t) = 0 for n <É4Z and 
therefore for every trigonometric polynomial p 

J X z ^T 

and since a continuous function on T is the uniform limit of trigonometric poly­
nomials, the equality remains true if p is replaced by any such function. This 
shows that v is a measure of period IT/29 that is, v(S 4- TT/2) = v(S) for every 
Borel set S C T. On the other hand, since ju is supported on [—7r/2,7r/2], p(S) = 
Js ^W ^ f°r every Borel set S C [0,7r/2). Combining these facts we see that 
v is in I2(T), and therefore setting SN(y) = 2 ^ ^ ^ 9(n)einx,N = 0, 1,. . . , 
we deduce that 

I^-'SJVOOIIM» < I ^ - ^ ( I ; ) | | 2 - > 0 asiV-~>cx,. 

This shows that every element in M* with spectrum contained in Ex, is even in 
the norm closure in M*, of the vector space spanned in M* by the set {einx: 
nEEt}, and therefore Ex is of synthesis for M. To show that E2 — 4Z + 2 is 
also a set of synthesis for M, consider a measure p in M* with spectrum in E2 ; 
then the spectrum of the measure e2lxp is in Et, hence by the previous part of 
the proof this measure is in L2(T), and therefore p is also in L2(T). This implies 
as before, that E2 is of synthesis for M (even in the norm topology of M*). The 
remaining assertions of the theorem follow from the main result in [3]. For the 
sake of completeness we include here a different proof which is more in line with 
the approach of this paper. To show that the set E — Ex U E2 is not of synthesis 
for M, consider the element of M* defined by the measure p = S ,̂2 4- d_n,2 

(for every r G T, ST denotes the unit point measure concentrated at r) and the 
function ƒ in M defined by: f(x) = 1 for \x\ < n/2 and f(x) = - 1 for ir/2 < 
\x\ < IT. Then p(«) = 2 cos(wr/2), V n G Z, f(ri) = 2 sin(w7r/2)/«7r, for n G Z\{0}, 
and /(O) = 0. Thus a(p) C E and ƒ = 0 on E, but <ƒ, p> = 2, and therefore E 
is not a set of synthesis for M. 
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PROOF OF (b). To show that {°°} is not a Ditkin set for M1? consider 
again the measure /x and the function ƒ defined above. Noticing that {q, JU> = 0 
for every trigonometric polynomial q such that q = 0 on 2Z, we obtain for every 
trigonometric polynomial p (by using the identity p * ƒ = ^~^Np{n)f{n)einx, 
where Af is the degree of p) that 

II ƒ - P * ƒ IIM > UMIIM* </ - P * ƒ, M> = 1 

and consequently {«>} is not a Ditkin set for Mj. 
REMARK. The proof of the theorem shows that the sets Kx and K2 are 

of synthesis for Mj even in the norm topology of M J but Kt U K2 is not of 
synthesis for Mt even in the w* topology of Mv 

The answers to the first and second questions mentioned at the beginning 
are not known for group algebras of locally compact noncompact abelian groups; 
in particular they are not known for the group algebra of Z. A discussion of these 
problems and partial results can be found in [1, Chapter 1 and 2], [4, Chapters 
2 and 6] and [5, Chapter 7]. 

REFERENCES 

1. J. Benedetto, Spectral synthesis, B. G. Teubner, Stuttgart, 1975. 
2. Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. 
3. H. Mirkil, A counterexample to discrete spectral synthesis, Composito Math. 14 

(1960), 269-273 . 
4. H. Reiter, Classical harmonic analysis and locally compact groups, Calderon Press, 

Oxford, 1968. 
5. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962. 

DEPARTMENT OF MATHEMATICS, TECHNION-ISRAEL INSTITUTE OF TECH­
NOLOGY, TECHNION CITY, HAIFA, ISRAEL 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, 
HAWAII 96822 

Current address: Department of Mathematics, University of Michigan, Ann Arbor, 
Michigan 48109 


