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BOOK REVIEWS 

An introduction to the general theory of algorithms, by Michael Machtey and 
Paul Young, North-Holland, New York, Oxford, Shannon, 1978, vii 4- 264 
pp. 

In order to discuss this book properly, a brief recounting of some of the 
history of the theory of algorithms is in order. 

Although the notion of mathematical algorithm had been used for 
centuries, the present rigorous definition was not accomplished until Gödel, 
Church, Turing and Kleene gave their formulations in the 1930's. That all 
these formulations, and several later ones, proved to be equivalent is a kind of 
event that is indeed rare in mathematics. The assertion that these formula­
tions coincide with the intuitive notion of mathematical algorithm is known 
as Church's Thesis. In the 1930's Gödel also demonstrated the existence of 
algorithmically unsolvable problems, particularly the unsolvability of the 
decision problem for arithmetic (which dashed the hopes of Hubert's Pro­
gram, and at the same time was the first application of Cantor's diagonaliza-
tion technique in this area). 

In the 1940's the construction of computers that could implement algo­
rithms had a profound effect on the development of the theory. Von Neu­
mann explored the program-data dichotomy (one man's program is another 
man's data) and produced the notion of a stored program computer and the 
manipulation of one program by another. Finally, in the 1960's, after a 
decade of programming experience, the realization of the importance of an 
algorithm's complexity lead to the replacement of the notion of algorithmic 
unsolvability by algorithmic intractability. That is: while certain problems 
may be theoretically algorithmically solvable, their intrinsic computational 
complexity prevents any algorithm from running to completion. 

As in most texts in this area, the invariance of the notion of algorithmic 
computability is demonstrated by introducing several models of computation 
and showing them to be equivalent. Unlike most texts, however, the present 
one accomplishes this in the first fifty pages, within the first chapter. While 
many details of this equivalence are omitted and left to the reader to supply, 
anyone with formal mathematical experience or reasonable computer pro­
gramming experience can readily follow the outline of the simulations, even if 
he cannot completely fill the gaps. The other significant feature of the first 
chapter is that measures of computational complexity for the various models 
considered are introduced there as well. 

Not only are the usual models of computation equivalent, they are effec­
tively intertranslatable. The properties common to the standard models that 
are responsible for such intertranslatability can be abstracted axiomatically 
through what are called acceptable programming systems (or acceptable 
Gödel numberings). An acceptable (universal) programming system (§3.1) is 
one in which there exists (1) a universal program, which, given any program 
and any input, computes the output of that program on that input, and (2) an 
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effective transformation of any pair of programs into a program that com­
putes the composition of their corresponding functions. The usual definition 
of acceptable programming system differs from this one (although they are 
equivalent) in that (2) above is replaced by: (2') an effective transformation of 
any program and any data into a program that consists of the given program 
with the given data incorporated into it. Composition, of course, is mathe­
matically fundamental, but the notion of a program with incorporated data is 
computationally fundamental. The latter is apparent from Kleene's Recursion 
Theorem (§3.4), which in one form states that for any computable function it 
is possible to construct a program with a description of itself incorporated 
into it, which computes the given function. In another form it states that 
every computable transformation of programs has a fixed point, i.e., a 
program whose input-output behavior is unaffected by that transformation. 
The Recursion Theorem is often used to construct computable functions all 
of whose programs satisfy certain conditions. The intertranslatability of 
acceptable programming systems mentioned at the beginning of this para­
graph achieves its strongest form in Rogers' Isomorphism Theorem (§3.4), 
which states that between any two acceptable programming systems there is a 
computable input-output behavior preserving bijection, i.e., a computable 
bijection between equivalent programs. 

The concept of algorithmic unsolvability (a view of computability from 
without) is touched on at several points in this book, and, except for degrees 
of unsolvability, is complete with respect to the fundamental issues. Most 
fundamental, of course, is the existence (§2.5, §2.6) of algorithmically unsolv-
able problems, the most widely known being the halting problem (§3.2). The 
standard technique for demonstrating the unsolvability of a problem is to 
reduce a known unsolvable problem to it (§3.2), i.e., to establish the con­
tradictory argument that an algorithm for the given problem would provide 
an algorithm for the known unsolvable problem. The decision problems of 
most interest to computer scientists concern the functional properties of 
programs, but Rice's Theorem (§3.2) shows that "in any acceptable program­
ming system there are no nontrivial properties of the input-output behavior of 
programs, that is, properties of [computable] functions which can be decided 
by looking at the programs." 

As indicated above, the notions of computability and algorithmic unsolva­
bility trace their formal beginnings to Gödel's work on mathematical logic in 
the 1930's, and it is appropriate that one chapter of the book is devoted to 
this. Among the results considered are two fundamental ones: Gödel's Unde-
cidability for Theorems (§4.3), which states that in any formal system that is 
capable of representing arithmetic (and hence the computable functions), the 
problem of deciding whether a given statement is a theorem of that system is 
algorithmically undecidable (this can be viewed as an analog of the halting 
problem); and Gödel's Incompleteness Theorem (§4.3), which states that for 
such systems, since the provably false statements can be effectively enu 
merated as well as the theorems, there must exist statements that can be 
neither proved nor disproved within the system. 

There are aspects of computable functions other than their input-output 
behavior that are also of great importance, namely, the time taken or memory 
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used by programs for computing them. This notion of computational com­
plexity can be studied axiomatically by means of axioms given by Blum for 
acceptable programming systems. Such a general approach is justified by an 
equivalence result (§5.2) which states that given any two acceptable program­
ming systems and any two computational complexity measures for them, one 
can effectively translate results (i.e., upper or lower bounds) for the complex­
ity of functions with respect to one system into corresponding results for the 
other system. The first observation to be made regarding complexity is that 
there exist computable functions that are arbitrarily difficult to compute, i.e., 
all of whose programs exceed an a priori specified amount of computation 
resources. This naturally leads to the establishment of a hierarchy of the 
computable functions based on their computational complexity. The Gap 
Theorem (§5.3) warns that care must be taken in choosing the strata of such a 
hierarchy. Perhaps the deepest result in axiomatic computational complexity 
theory is Blum's Speedup Theorem (§5.3), which states that there exist 
computable functions that are so difficult to compute that corresponding to 
any program for such a function there is another program for it that is more 
efficient than the first by an a priori arbitrarily specified amount. The impact 
of this result is that in general, for any computable function, there is no single 
complexity function that can be associated with it. 

For real computations, of course, the computational complexity of a 
program is of practical interest. Any problem that cannot be solved in 
polynomial time is for all practical purposes unsolvable. Examples of prob­
lems that are of practical interest but that are intractable are given in Chapter 
six of the text. There are, moreover, a number of real problems of great 
importance, such as the travelling salesman problem, whose tractability is at 
present unknown. They can, however, be solved in polynomial time if 
arbitrary parallelism is permitted, which brings the present discussion to the 
forefront of theoretical computer science research and introduces the current 
most outstanding open problem, namely, P = JVP ?(§7.3). At this point, the 
book closes and so too does our discussion of its contents. 

Since the book is intended to be an introductory graduate level textbook, 
some comments on its use are in order. It is an excellent text for beginning 
graduate students with a good formal mathematical background. For com­
puter science students, however, care must be exercised (by the instructor) to 
make sure that they do not run into possibly insurmountable difficulties of 
notation and abstraction. With proper care and perhaps "hand waving", 
instead of some formal proofs, these potential dificulties can be avoided. The 
book exhibits much pedagogical concern with providing abundant motivation 
for many of the formal investigations, and there are numerous exercises 
involving further development of the text material. 

In conclusion, this book is significant in its early incorporation of computa­
tional complexity into the study of the theory of computability. Perhaps 
future texts will involve computational complexity not only as an object of 
investigation but also as a tool in the investigation of computability itself. 

ROBERT P. DALEY 


