
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 2, Number 1, January 1980
©1980 American Mathematical Society
0002-9904/80/0000-0009/$01.7S

BOOK REVIEWS

An introduction to the general theory of algorithms, by Michael Machtey and
Paul Young, North-Holland, New York, Oxford, Shannon, 1978, vii 4- 264
pp.

In order to discuss this book properly, a brief recounting of some of the
history of the theory of algorithms is in order.

Although the notion of mathematical algorithm had been used for
centuries, the present rigorous definition was not accomplished until Gödel,
Church, Turing and Kleene gave their formulations in the 1930's. That all
these formulations, and several later ones, proved to be equivalent is a kind of
event that is indeed rare in mathematics. The assertion that these formula­
tions coincide with the intuitive notion of mathematical algorithm is known
as Church's Thesis. In the 1930's Gödel also demonstrated the existence of
algorithmically unsolvable problems, particularly the unsolvability of the
decision problem for arithmetic (which dashed the hopes of Hubert's Pro­
gram, and at the same time was the first application of Cantor's diagonaliza-
tion technique in this area).

In the 1940's the construction of computers that could implement algo­
rithms had a profound effect on the development of the theory. Von Neu­
mann explored the program-data dichotomy (one man's program is another
man's data) and produced the notion of a stored program computer and the
manipulation of one program by another. Finally, in the 1960's, after a
decade of programming experience, the realization of the importance of an
algorithm's complexity lead to the replacement of the notion of algorithmic
unsolvability by algorithmic intractability. That is: while certain problems
may be theoretically algorithmically solvable, their intrinsic computational
complexity prevents any algorithm from running to completion.

As in most texts in this area, the invariance of the notion of algorithmic
computability is demonstrated by introducing several models of computation
and showing them to be equivalent. Unlike most texts, however, the present
one accomplishes this in the first fifty pages, within the first chapter. While
many details of this equivalence are omitted and left to the reader to supply,
anyone with formal mathematical experience or reasonable computer pro­
gramming experience can readily follow the outline of the simulations, even if
he cannot completely fill the gaps. The other significant feature of the first
chapter is that measures of computational complexity for the various models
considered are introduced there as well.

Not only are the usual models of computation equivalent, they are effec­
tively intertranslatable. The properties common to the standard models that
are responsible for such intertranslatability can be abstracted axiomatically
through what are called acceptable programming systems (or acceptable
Gödel numberings). An acceptable (universal) programming system (§3.1) is
one in which there exists (1) a universal program, which, given any program
and any input, computes the output of that program on that input, and (2) an

187

188 BOOK REVIEWS

effective transformation of any pair of programs into a program that com­
putes the composition of their corresponding functions. The usual definition
of acceptable programming system differs from this one (although they are
equivalent) in that (2) above is replaced by: (2') an effective transformation of
any program and any data into a program that consists of the given program
with the given data incorporated into it. Composition, of course, is mathe­
matically fundamental, but the notion of a program with incorporated data is
computationally fundamental. The latter is apparent from Kleene's Recursion
Theorem (§3.4), which in one form states that for any computable function it
is possible to construct a program with a description of itself incorporated
into it, which computes the given function. In another form it states that
every computable transformation of programs has a fixed point, i.e., a
program whose input-output behavior is unaffected by that transformation.
The Recursion Theorem is often used to construct computable functions all
of whose programs satisfy certain conditions. The intertranslatability of
acceptable programming systems mentioned at the beginning of this para­
graph achieves its strongest form in Rogers' Isomorphism Theorem (§3.4),
which states that between any two acceptable programming systems there is a
computable input-output behavior preserving bijection, i.e., a computable
bijection between equivalent programs.

The concept of algorithmic unsolvability (a view of computability from
without) is touched on at several points in this book, and, except for degrees
of unsolvability, is complete with respect to the fundamental issues. Most
fundamental, of course, is the existence (§2.5, §2.6) of algorithmically unsolv-
able problems, the most widely known being the halting problem (§3.2). The
standard technique for demonstrating the unsolvability of a problem is to
reduce a known unsolvable problem to it (§3.2), i.e., to establish the con­
tradictory argument that an algorithm for the given problem would provide
an algorithm for the known unsolvable problem. The decision problems of
most interest to computer scientists concern the functional properties of
programs, but Rice's Theorem (§3.2) shows that "in any acceptable program­
ming system there are no nontrivial properties of the input-output behavior of
programs, that is, properties of [computable] functions which can be decided
by looking at the programs."

As indicated above, the notions of computability and algorithmic unsolva­
bility trace their formal beginnings to Gödel's work on mathematical logic in
the 1930's, and it is appropriate that one chapter of the book is devoted to
this. Among the results considered are two fundamental ones: Gödel's Unde-
cidability for Theorems (§4.3), which states that in any formal system that is
capable of representing arithmetic (and hence the computable functions), the
problem of deciding whether a given statement is a theorem of that system is
algorithmically undecidable (this can be viewed as an analog of the halting
problem); and Gödel's Incompleteness Theorem (§4.3), which states that for
such systems, since the provably false statements can be effectively enu
merated as well as the theorems, there must exist statements that can be
neither proved nor disproved within the system.

There are aspects of computable functions other than their input-output
behavior that are also of great importance, namely, the time taken or memory

BOOK REVIEWS 189

used by programs for computing them. This notion of computational com­
plexity can be studied axiomatically by means of axioms given by Blum for
acceptable programming systems. Such a general approach is justified by an
equivalence result (§5.2) which states that given any two acceptable program­
ming systems and any two computational complexity measures for them, one
can effectively translate results (i.e., upper or lower bounds) for the complex­
ity of functions with respect to one system into corresponding results for the
other system. The first observation to be made regarding complexity is that
there exist computable functions that are arbitrarily difficult to compute, i.e.,
all of whose programs exceed an a priori specified amount of computation
resources. This naturally leads to the establishment of a hierarchy of the
computable functions based on their computational complexity. The Gap
Theorem (§5.3) warns that care must be taken in choosing the strata of such a
hierarchy. Perhaps the deepest result in axiomatic computational complexity
theory is Blum's Speedup Theorem (§5.3), which states that there exist
computable functions that are so difficult to compute that corresponding to
any program for such a function there is another program for it that is more
efficient than the first by an a priori arbitrarily specified amount. The impact
of this result is that in general, for any computable function, there is no single
complexity function that can be associated with it.

For real computations, of course, the computational complexity of a
program is of practical interest. Any problem that cannot be solved in
polynomial time is for all practical purposes unsolvable. Examples of prob­
lems that are of practical interest but that are intractable are given in Chapter
six of the text. There are, moreover, a number of real problems of great
importance, such as the travelling salesman problem, whose tractability is at
present unknown. They can, however, be solved in polynomial time if
arbitrary parallelism is permitted, which brings the present discussion to the
forefront of theoretical computer science research and introduces the current
most outstanding open problem, namely, P = JVP ?(§7.3). At this point, the
book closes and so too does our discussion of its contents.

Since the book is intended to be an introductory graduate level textbook,
some comments on its use are in order. It is an excellent text for beginning
graduate students with a good formal mathematical background. For com­
puter science students, however, care must be exercised (by the instructor) to
make sure that they do not run into possibly insurmountable difficulties of
notation and abstraction. With proper care and perhaps "hand waving",
instead of some formal proofs, these potential dificulties can be avoided. The
book exhibits much pedagogical concern with providing abundant motivation
for many of the formal investigations, and there are numerous exercises
involving further development of the text material.

In conclusion, this book is significant in its early incorporation of computa­
tional complexity into the study of the theory of computability. Perhaps
future texts will involve computational complexity not only as an object of
investigation but also as a tool in the investigation of computability itself.

ROBERT P. DALEY

