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logic, the use of van Kampen diagrams and the treatment of small cancella­
tion theory and its applications represent very fine achievements. Much of the 
material has appeared only in the periodical literature until now; indeed some 
of the material appears here in print for the first time. The book is clearly an 
important contribution to the mathematical literature. But it is only fair that I 
add some words of warning. The authors have followed their personal 
interests a little too closely. As a consequence the broad scope of the subject 
itself is only hinted at. The book was written in two parts, the first by one 
author, the second by the other, and common material was simply repeated as 
it arose. Apparently this was intentional, allowing the reader to read each 
chapter as a separate entity. Nevertheless the arrangement of the material is 
haphazard, the exposition is very uneven, some of it is unnecessarily hard to 
follow, some almost impossible. There are much too many misprints, succes­
sive paragraphs are sometimes unrelated and motivation is almost totally 
lacking. Some of the text has not been well-worked out, the graph-theoretic-
topological parts demand varying levels of topological expertise and no 
attempt has been made to find the general topological principles that govern 
much of this material as well as many of the subgroup theorems. The notion 
of an aspherical presentation is somehow identified with the topological 
notion of asphericity without sufficient justification. In spite of these very real 
criticisms this is still an important piece of work. 
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Bounded integral operators on L2 spaces, by P. R. Halmos and V. S. Sunder, 
Ergebnisse der Mathematik und ihrer Grenzgebiete no. 96, Springer-Verlag, 
Berlin and New York, 1978, xv + 134 pp.,$16.50. 

This slim volume in the Ergebnisse series (to which I shall refer as H-S) 
deals with bounded integral operators on L2 spaces, that is to say, bounded 
linear operators K: L2(Y, v) -» L2(X, fi) of the form 

(Kf)(x) = f k(xyy)f{y)dv{y) 

for all ƒ G L2(Y, v), where (X, JU,) and (Y, v) are a-finite and separable 
measure spaces and the integral is an "ordinary" one with respect to v (no 
principal values; no L2 limits as in the theory of Fourier transforms). 
Restriction to a a-finite separable measure implies (by a well-known isomor­
phism theorem) that for most purposes it may just as well be assumed that v 
is either Lebesgue measure in the interval [0, 1] or counting measure in Z (or 
N) or a finite subset of N. There are two recent books on integral operators of 
a general nature (i.e., not restricted to L2 operators), one by the late K. 
Jörgens ([2, 1970], in German) and one by M. A. Krasnosel'skiï, P. P. 
Zabreïko, E. I. Pustyl'nik and P. E. Sobolevskiï ([3, 1966], in Russian; English 
translation 1976). We may ask, therefore, if it is still possible to say something 
of interest about the simple L2 case that has not been said many times before. 
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The H-S book shows that the answer is yes. Going one step further, we may 
also ask if there are any important problems, left open in H-S, which have 
been solved recently. The answer is yes again; the question how to recognize 
an integral operator is not so mysterious any more as it was before. It is 
interesting to observe that for the solution of the recognition problem one has 
to go beyond L2 into the space of all measurable functions. 

For a review of some of the most interesting points, let us be a little more 
precise about the definitions. Let (X, /x) and ( Y, v) be a-finite measure spaces 
(not necessarily separable) and let ?fïL(X9 /x) be the vector space of all 
complex xx-almost everywhere finite and /x-measurable functions on X (with 
identification of xx-almost equal functions). The vector space 91L(F, v) is 
defined similarly. The subset D of 9IL(X, /x) is said to be solid if any function 
in ^(X, xx) that is majorized in absolute value by a member of D belongs 
itself to D (i.e., if ƒ G 9ït(X, /x) and g G D satisfy |/(;c)| < \g(x)\ almost 
everywhere on X, then ƒ £ / ) ) . Any solid linear subspace of ^(X, /x) is 
called an order ideal (briefly ideal) in ^y!i(X, /x). All spaces LP(X, /x), 0 <p < 
oo, are ideals. 

For brevity, I shall call any linear mapping from one vector space into 
another an operator. Let E and F be ideals in 91L(y, v) and ty\l(X, /x) 
respectively. The operator K: E --» F is called an integral operator if there 
exists a ( /x X j>)-measurable function k(x, y) on X X Y such that, for every 
ƒ G E, we have 

(*ƒ)(*) = f k(x,y)f(y)dp(y) 
JY 

for almost every x (the exceptional null set depending on ƒ, of course). The 
function k(x,y) is called the kernel of K. In this case it is evident that, for 
every ƒ G E, the function 

f \k(x,y)f(y)\ dv{y) 
J Y 

is finite almost everywhere on X, and so \k(x,y)\ is the kernel of an integral 
operator Ka which maps E into ty\L(X, /x). If K: E -» F is an integral operator 
and Ka has the additional property that it maps E not only into 91L(Ar, /x) but 
into F as well, then I shall call K an absolute integral operator (from E into F). 
In the H-S book we meet the situation that E = L2(Y, V) and F = L2(X, /x) 
with JU and v not only a-finite but also separable (and hence L2(X, xi) and 
L2( y, v) separable). Let us call this the separable L2 situation. As is well 
known in the L2 situation, the integral operator K is called a Hilbert-Schmidt 
operator if |/c(x,>>)|2 is (/i X *>)-summable and K is called a Carleman operator 
if 

f\k(x,y)\2dp(y) 

is finite for almost every x. 
One of the first matters to be settled in the L2 situation is to find out 

whether integral operators are bounded (i.e., continuous). The answer is yes. 
For absolute integral operators there is a very elementary proof; for integral 
operators that are nonabsolute the proof is based on the closed graph 
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theorem and on the lemma that every norm convergent sequence in L2(Y9 v) 
has a dominated subsequence (i.e., dominated in absolute value by a fixed L2 

function) that converges pointwise almost everywhere on Y. There is a 
remark in H-S that this particular lemma does not seem to be in the conscious 
memory of even the experts in measure theory, so it is perhaps of some 
interest to observe that there exists a theorem asserting that every norm 
convergent sequence in a Banach lattice has a subsequence which converges 
in order. For L2( Y, v) this means that if gn-> g in norm, then there is a 
subsequence gn and there is a sequence hj G L2(Y, v) such that \g — gn\ < 
hjlO pointwise almost everywhere on Y. The boundedness proof can im­
mediately be extended to integral operators K: E -* F if the ideals E and F 
carry norms that make them into Banach lattices (such as, for example, LP 
spaces, 1 < p < oo ). The boundedness proof is already a first example of 
how much easier absolute integral operators are to handle than nonabsolute 
ones. On the other hand, as far as boundedness of the operator is concerned, 
not all order ideals in the space ?fH(Y9v) of measurable functions carry 
norms, and as I shall explain further on, it seems that in the problem how to 
recognize an integral operator order properties (and not norm continuity 
properties) play a decisive part. 

Among the questions analyzed in H-S there are three major ones: 
(i) which operators can be integral? (i.e., for which bounded operators T: 

L2(X, JU) -> L2(X, JU) does there exist a unitary operator U such that UTU* is 
an integral operator?); 

(ii) which operators must be integral? (i.e., for which bounded operators T: 
L2(X, fi) -» L2(X, ix) is it true that UTU* is integral for every unitary Ul); 

(iii) which operators are integral and which operators are Carleman? 
The first two questions, as formulated here, are typically L2 questions and 

they get a complete answer. For the case of an atomic measure (L2 = I2) the 
answers are trivial; every bounded operator on I2 is represented by a matrix 
and is, therefore, an integral operator. Assume now that the measure \i in X is 
not (purely) atomic. Then the bounded operator T (from L2 into itself) is 
unitarily equivalent to an integral operator if and only if zero belongs to the 
right essential spectrum of T (in other words, for any bounded operator A 
from L2 into itself the operator TA — I is not compact; I is the identity 
operator). This general result was proved in the Indiana University disserta­
tion of the junior author (1977); special cases were known earlier (J. von 
Neumann, 1935; J. Weidmann, 1970). The proof is based on the observation 
that if ii(X) is finite, then L2(X, JH) is contained in Ll(X, JU), and so every 
operator in L2 can also be regarded as an operator from L2 into L1. In this 
situation any integral operator T: L2 -» L2 (compact or not) is compact as an 
operator from L2 into L1. Using this result it is not difficult to show that any 
integral operator on L2 has zero in its right essential spectrum. As a corollary 
one gets that T is unitarily equivalent to an integral operator if and only if T 
is unitarily equivalent to a Carleman operator. As for the second question, 
UTU* is integral for every unitary U if and only if T is Hilbert-Schmidt (V. 
B. Korotkov, 1974). It was proved earlier that if UTU* is Carleman for every 
unitary U, then Tis Hilbert-Schmidt (G. I. Targonski, 1967). 

The third question, the one asking which operators are indeed integral 
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operators, does not receive a complete answer in H-S. The authors give a 
partial answer because in the last section of the book they present several 
necessary and sufficient conditions for an operator to be Carleman. One of 
these (J. Weidmann, 1970) is that the bounded operator T: L2 ~-> L2 is 
Carleman if and only if T maps every norm null sequence onto an almost 
everywhere null sequence (i.e., | | g j | -»0 implies (Tgn)(x)-+0 almost every­
where). The answer for an arbitrary integral operator, although not given in 
H-S, is known. Except for one small but important additional condition, it is 
the same as for a Carleman operator. The operator T; L2 —» L2 is integral if 
and only if T maps every dominated norm null sequence onto an almost 
everywhere null sequence (i.e., 0 < \gn\ < g0 E L2 and | |gJ | -»0 implies 
(Tgn)(x) -» 0 almost everywhere). Before going further, note that || gn\\ -» 0 in 
L2 implies that every subsequence of gn contains an almost everywhere null 
subsequence. This last property is usually called star convergence of gn to zero 
(notation gn -4 0). In the converse direction, gn E L2 for all n and gn A 0 does 

not always imply || gn\\ ~» 0, but gn -40 together with 0 < \gn\ < g0G L2 does 
imply | |g j | -»0 (by the dominated convergence integration theorem). Hence, 
we obtain the norm free reformulation that the operator T: L2 -» L2 is 
integral if and only if T maps every dominated star null sequence onto an 
almost everywhere null sequence. For a brief discussion of this result and 
where it comes from I return to the more general situation that E and F are 
order ideals in ?HL(y, v) and ^(X, /x) respectively, not necessarily equipped 
with a norm. As mentioned in the beginning, JU, and v are a-finite but not 
necessarily separable. Without restriction of the generality we may assume 
that the carrier of E is the whole set Y (i.e., there does not exist any subset Yx 

of Y of positive measure on which every ƒ E E vanishes almost everywhere). 
Similarly, we assume that X is the carrier of F. As usual, the operator T: 
E -» F is said to be positive if T maps nonnegative functions onto nonnega-
tive functions and T is called order bounded (or regular in the terminology 
used by most Soviet authors) if T = Tx - T2 with Tx and T2 positive. Hence, 
every positive operator is order bounded. Any absolute integral operator K: 
E -» F is order bounded since K = Ka - (Ka - K) with Ka and Ka- K 
positive operators from E into F. The set tb = fcb(E, F) of all order bounded 
operators (from E into F) is a Riesz space {vector lattice) under the natural 
ordering (Tx < T2 whenever T2 - Tx is positive) and the absolute integral 
operators form evidently a linear subspace £, = £,(£, F) of tb(E, F). The 
linear subspace £, has additional properties; in the Riesz space terminology 
£,. is a band in tb. Without going into technical details, the main point here is 
to prove that any positive operator dominated by an integral operator is itself 
an integral operator (i.e., if 0 < T < K in tb and K is integral, then T is 
integral). As far as I know, there are now three different proofs for this result 
in the literature. One, by L. Lessner [4, 1978] assumes the measure v 
separable. The second one, by A. V. Buhvalov ([1, 1974]; English translation 
1978) uses lifting. The third one, finally, by A. R. Schep ([7, 1977]; [8, 1979]) 
is simple and makes use only of the ordinary Radon-Nikodym theorem. I 
briefly outline the idea behind Schep's proof. It is a technical matter to 
reduce the proof to the case that 
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f K(x,y)d(ii X v) < oo, 
JXxY 

where K(x, y) > 0 is the kernel of K. Then 

A(P) = f * ( X , J O < / ( / I X I O 

is a finite measure on the a-algebra of all (JU, X ^-measurable subsets of 
X X Y such that A is absolutely continuous with respect to \i X v. Let T be 
the semiring of all sets A X B, where .4 c X is ju-measurable and 2? c y is 
^-measurable. For A X B E:T, define 

X^AXB)- f (TXB)(X) dix(x% 

where XB is the characteristic function of B. It is easy to prove that A, is a 
measure on T satisfying Aj < A on T. Now extend \{ by the Carathéodory 
procedure. Every (JU, X ^-measurable set becomes A^measurable and we get 
Aj < A on the a-algebra of all (//, X p)-measurable sets, so A! is absolutely 
continuous with respect to JU, X v. Hence (Radon-Nikodym) there exists a 
(/x X ^-measurable T{x,y) > 0 such that 

A1(/>)= f T(x,y)d(iiXv) 

for all ( (x X p)-measurable sets P. Applying this to P = A X B E T, it 
follows easily that 

(TXB)(X) = f T(x,y)XB(y)dv(y) 

for almost every x. It is then routine to show that T is an integral operator 
with kernel T(x, y). 

It is time to return to the condition that the operator T: E -» F satisfies the 
Condition (B): T maps every dominated star null sequence in E onto an 

almost everywhere null sequence. 
An easy argument shows that any positive integral operator satisfies (B). If T: 
E -* F is an arbitrary integral operator, then T can be regarded as an 
absolute integral operator from E into 911 (Jf, /i), so Ta: E -> ^(A", jit) 
satisfies (B). It follows immediately that T itself satisfies (B). Before turning 
to the converse problem whether (B) implies that T is an integral operator, 
note that it may occur that there do not exist any nontrivial integral operators 
at all. If X = y is the real line with \x = v Lebesgue measure and if E = F is 
the space 911 (X, /A) of all Lebesgue measurable functions, then the only 
integral operator (from E into F) is the null operator. To indicate a sufficient 
condition for the existence of nontrivial integral operators, let E* be the ideal 
in 91L(y, v) consisting of all functions g such that f g is p-summable over Y for 
every ƒ G E. For g £ F and h G F the function h(x)g(y) is obviously the 
kernel of an absolute integral operator from E into F. If the carrier of E~ is 
the whole set Y the finite linear combinations of these simple operators 
(integral operators of finite rank) are what is called order dense in the band £,. 
of all absolute integral operators (i.e, £, is the smallest band containing all 
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operators of finite rank). For E = L2( Y, v) and F = L2(X, JU) the carrier of 
E* is Y because FT— E = L2(Y, v\ so the absolute integral operators in the 
H-S book form a band in which the finite rank operators are lying order 
dense. (Question for H-S readers: Is this result hidden somewhere in H-S; 
perhaps in Theorem 11.5?). 

Assume now, to avoid complications, that Y is the carrier not only of E but 
of E* as well. This guarantees, therefore, the existence of plenty of integral 
operators. In this situation Buhvalov's theorem holds, stating that condition 
(B) is not only necessary but also sufficient for T: E -» F to be an integral 
operator. This was proved by Buhvalov and, independently, by Schep in the 
papers mentioned above. Their proofs are to some extent analogous to a 
proof by H. Nakano ([6, Theorem 5.2], 1953) about bilinear forms (this can 
be understood only by those who are more or less familiar with Nakano's 
terminology). In the case that T: E -* F satisfies (B) and is also order 
bounded, T can be written as T = Tx — T2 with TVT2 positive and satisfying 
(B). Hence, in this case it may be assumed that T is positive. Since the 
absolute integral operators form a band in the space of order bounded 
operators, T can now be written uniquely as T = T' + T" with V a positive 
integral operator and T" positive, satisfying (B) and disjoint to the band of 
integral operators (i.e., the only positive integral operator majorized by T" is 
the null operator). The proof is reduced, therefore, to showing that any 
positive T which satisfies (B) and is disjoint to all integral operators is the null 
operator. This is not easy, but the remarkable analogy with Nakano's result 
(referred to above) shows part of the way. If T: E -> F satisfies (B) but T is 
not order bounded as an operator from E into F, then it follows from 
condition (B) that T is order bounded as an operator from E into 9!t(X, JU,); 
the proof is not trivial. Anyhow, in view of the result in the order bounded 
case, it follows that T is an integral operator also in this more general case. 

Altogether this is a rather formidable structure which, except for some 
elementary facts from the theory of Riesz spaces, can be expressed in purely 
measure theoretic classical terms. If one should desire so, even the Riesz 
space terminology can be avoided (at the cost of more words). It will be 
evident that it took some time to develop all this. Let me still mention the 
pioneering work of the late G. Ya. Lozanovskn [5, 1966]. In relation to the 
H-S book several questions arise. Is it possible, for example, to simplify 
matters if the theory is restricted to L2? I believe not. And to which extent is 
it possible to drop the separability assumption in H-S? 

I return for a moment to the situation that E is a ideal in 9IL( Y, v). If E is 
equipped with a norm p such that (E, p) is a Banach lattice, then the 
corresponding ideal E* is a closed linear subspace of the Banach adjoint 
space E* such that the norm p* in E*, restricted to E"9 makes (£", p*) into a 
Banach lattice (if, for example, E = Lp for some p satisfying 1 < p < oo, 
then E*= Lq for/?""1 + q~l = 1). The measurable function k(x,y) o n l X 
Y is now called a generalized Carleman kernel if p*{k(x, •)} exists as a finite 
number for almost every x and p*{k(x, •)} e WL(x, /A), i.e., p*{k(x, •)} is a 
measurable function of x. It can be proved that the following conditions for 
the operator K: E -> ?l\i(X9 jti) are equivalent: 

(i) K is an integral operator with generalized Carleman kernel. 
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(ii) There exists a finite nonnegative measurable function £2 on X such that 
|(Àg)(X)| < fi(x) • p(g) almost everywhere for every g G E (compare this 
with Theorem 17.2 in H-S). 

(iii) K maps every norm null sequence in E onto an almost everywhere null 
sequence (compare this with Theorem 17.7 in H-S). 

In the particular case that E = L2(Y, v), there is one more equivalent 
condition, as follows. 

(iv) If {ea} is any orthonormal set in L2(7, v\ then 

supj £ | #^ (x ) | 2 : n e N, (a„ . . . , a j e {a} j G 91t(X, /i). 

If the orthonormal set {ea} in (iv) is an orthonormal basis, then the supre-
mum in (iv) is (for almost every x) exactly the integral over Y of |&(;*;, j>)|2, so 
different orthonormal bases give the same supremum (compare this with 
Theorem 17.5 in H-S). These results about generalized Carleman operators 
are due to A. R. Schep and will be published in a forthcoming paper. 

Finally, let us take a look at adjoint operators. If K: L2(Y, v) -» L2(X, fi) is 
an absolute integral operator with kernel k(x,y), then the Banach adjoint 
operator K* is also an integral operator, possessing k{y, x) as kernel. If # is a 
nonabsolute integral operator, the situation is not so simple. In Theorem 7.5 
of H-S it is proved that K* is an integral operator if and only if k(y, x) is the 
kernel of some integral operator (from L2(X, }i) into L\ Y, *>)), and, in that 
case, k(y, x) is the kernel of AT*. In the more general situation that E is an 
ideal in ?f\L(Y9 v) such that E and E" have Y as carrier and F is an ideal in 
?fïL(X9 ti) such that F and F* have X as carrier, it is not difficult to prove that 
if K: E -» F is an absolute integral operator with kernel k(x, y), then there 
exists an absolute integral operator K~: F~—> ZT (the restriction of the order 
adjoint of K to F") possessing k(y, x) as kernel. Unless there are norms 
available, it seems not immediately clear how to extend this to nonabsolute 
integral operators. 

The H-S book is written in a lively style, as was to be expected. It is a mine 
of information for any analyst interested in operators, in particular operators 
on L2 spaces. The theory is illustrated by examples as well as by counterex­
amples; open problems are mentioned and sometimes analyzed. A list of 
bibliographical notes gives information about the history of the subject. The 
preface ends with the remark that the book contains only a part of a large 
subject, with only one of several approaches, and with explicit mention of 
only a few of the many challenging problems that are still open. I agree, but I 
hope that nevertheless it will be clear from my comments in this review that I 
believe the present contribution to operator theory by Halmos and Sunder is 
a valuable one. 
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The metric theory of Banach manifolds, by Ethan Akin, Lecture Notes in 
Math., vol. 662, Springer-Verlag, Berlin and New York, 1978, xix + 306 
pp., $13.50. 

Few books have been written on the subject of an abstract model for the 
structure of manifolds of maps; the present book is one of this select group. 
Most of the books and papers in global analysis have been concerned with 
the point-set or differential topology of abstract Banach manifolds, with 
applications to various equations from physics, or else with the introduction 
and investigation of new examples of manifolds of maps which may play a 
role in future investigations. While this mass of literature is for the most part 
not concerned with the structure of manifolds of maps itself, it has nonethe­
less helped to shed some light on the nature of this still poorly-understood 
structure (and, equally important, on what this structure is not). Before 
discussing The metric theory of Banach manifolds, let me review what the 
literature of global analysis has told us thus far about the nature of manifolds 
of maps. 

Let us assume for the moment that Mx and M2 are smooth finite-dimen­
sional manifolds, and that Mx is compact (possibly with boundary). Then all 
the standard examples of manifolds of maps from Mx to M2 contain the C°° 
maps, are infinite-dimensional manifolds, and are sandwiched as topological 
spaces between C°°(Af„ M2) and C\MV M2). By a result due to Palais [14, 
Theorem 16], it follows that all of these manifolds are of the same homotopy 
type as C°(MX, M2). But it is also well known to infinite-dimensional topolo-
gists [9] that any two homotopically equivalent topological manifolds, each of 
which is modeled on a separable infinite-dimensional Fréchet space (not 
necessarily the same space), are homeomorphic. While there exist important 
examples of manifolds of maps which are not separable, it still follows that 
most of the interesting spaces of maps from Mx to M2 are homeomorphic to 
C°(M,, M2). Thus nothing is gained topologically by investigating any 
Fréchet manifold of maps from Mx to M2 other than C°(MX, M2). Any gain is 
going to come from the analytical structure on the function space. Putting 


