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ON THE COMPLETE INTEGRABILITY 

OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 
BY M. S. BERGER1 AND P. T. CHURCH 

The concept of complete integrability for nonlinear Hamiltonian systems of 
finite dimension 2N is generally based on a theorem of Liouville (cf. [1, p. 271]), 
that requires the Hamiltonian system to possess N independent first integrals in 
involution. Recently this notion has been extended to infinite-dimensional 
Hamiltonian systems by a number of authors (for example, Faddeev and Zacharov, 
Gardner, Lax, McKean, Novikov, Gelfand and Dikii, among others) who have 
shown that certain nonlinear partial differential equations in two dimensions are 
integrable in this sense of Liouville provided one lets N —> <». In particular the 
celebrated Korteweg-de Vries 

ut + uux + uxxx = 0 (1) 

is completely integrable in this sense. 
However, this notion of complete integrability seems to be of limited 

value for treating nonlinear partial differential equations in more than two vari­
ables. Moreover, the study of the perturbations of a system completely integrable 
in this sense of Liouville generally requires radically new methods, since the first 
integrals (whose existence is intrinsic to the Liouville approach) are generally 
destroyed. 

In this article we define a new type of complete integrability for nonlinear 
elliptic boundary value problems (in fact for nonlinear mappings between Banach 
spaces), and show, by example, that an explicit nonlinear Dirichlet problem 
(irn) defined on an arbitrary bounded domain £2 C Rn with dimension n arbitrary 
is completely integrable in our sense. Moreover, our methods of study are suf­
ficiently flexible to yield significant results for a C1 perturbation Hn of -nn. 

1. The notion of complete integrability. Let A denote a given smooth 
(say Ck+1) mapping between two real Banach spaces Xx, X2. Then we say A 
is globally Ck equivalent to a mapping B between X3 and X4 if there are Ck 

diffeomorphisms a and ]3 such that the following diagram commutes 
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Xt >x2 

" î B Î * 
x3 >x^ 

so that Aa(x) = pB(x) for each J C G I 3 . 

The simplest case occurs when Xx = X2 = X3 = X4 are the same separable 
Hubert space; then [relative to an orthonormal basis (xl9x2,x3,...)]. A can 
be regarded as the coordinate mapping 

A(xx,x2,x3,. . . ) = (Al9A2,A3,. . . ), w i t h ^ = {A9x^xv (2) 

The mapping A will then be called Ck completely integrable if there is a 
mapping B of the form 

J S ^ , ^ , ^ , • . . ) = (gï(x1),g2(x2),g3(x3), • • • ) (3) 

where the real-valued function gt(x^) is a smooth function of xt (i = 1, 2, 3 , . . . ) 
such that A and i? are globally Ck equivalent in the sense defined above. (Thus 
B "diagonalizes" A and Unks the gradient nature of A to Hubert space theory.) 
More generally for distinct real separable Banach spaces Xt(i— 1, 2, 3, 4) with 
basis the equation (3) also provides a natural notion of global Ck equivalence. 

2. The nonlinear boundary value problem. Consider the following non­
linear elliptic Dirichlet problem studied in ([2], [3], [4]) 

\ 

Au+f(u) = g 

«|an = 0, 

defined on a bounded domain £2 C R", with boundary 3 SI. Here f(f) is a C7 

(ƒ > 2) real-valued domain function with f"(0) > 0 satisfying the asymptotic 
conditions 

° < A ( ^ ) < * I < & ( T ) < X * 
where Xj and X2 denote the lowest two eigenvalues of the Laplace operator A 
relative to null Dirichlet boundary conditions. 

To relate 7r„ to the notion of complete integrability described above we 
define a mapping A of the Sobolev space H = Wx 2(£2) into itself by setting 

(4ii, 4>)H = f (Vu • V0 - f(u)<l>)dx. (4) 
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If ƒ = 2, A is easily shown to be a C1 mapping of H into itself ([3]). For ƒ > 3, 
it is convenient to consider a mapping 21 = Aw + /(w) between the Holder 
spaces C2'a(ft) and C°>a(£ï) (with 0 < a < 1). Then we can prove 

THEOREM 1. For ƒ = 2,-4 [as defined in (4)] ö C° completely integrable 
in the sense that there are canonical homeomorphisms such that A is C° globally 
equivalent to B: H—+ H defined by 

Jj(X^9 ^2> X^> • • • ) v^i > %2' *^3' * * * * 

relative to an orthonormal basis of normalized eigenfunctions of à. For j = 3 
the operator 21 as defined above is C1 completely integrable with the same 
canonical homeomorphisms relative to the orthonormal basis mentioned above, 
and 21 is C1 globally equivalent to the operator B: C2>a(ü) —• C0>a(SÏ) defined 

by n{X^9 X2> #3> • • • ) = (,*̂ 1 > * 2 ' **3» • • • /• 

As corollaries we find (i) the operators A and 21 are proper mappings, (ii) 
for g E L2, the solutions of TTn can be explicitly determined in terms of the 
canonical coordinates mentioned in Theorem 1, (iii) rrn has either 0, 1 or 2 solu­
tions depending on whether or not g is a singular value of the mapping A, and 
(iv) all the singular points are "infinite-dimensional folds" (in the sense of 
Whitney). Also, (v) consider a sufficiently small C1 perturbation ƒ of ƒ in (iTn) 
that destroys the convexity of ƒ and hence the C° complete integrability of A ; 
then, using the methods of proof of Theorem 1, and assuming ƒ " is uniformly 
bounded, one shows the perturbed Dirchlet problem (rfn) and (7r„), for g outside 
a small neighbourhood of the singular values of Ay have the same number and 
approximate size of solutions. 

Sketch of the proof of Theorem 1. The proof divides into two distinct 
parts. First an analytical part, in which one determines explicit cartesian repre­
sentations of the singular points and singular values for the abstract mapping^. 
This is achieved by noting that the mapping A is a diffeomorphism when re­
stricted to the complement of Ker(A + \x) and then carefully analyzing the re­
sulting one-dimensional problem so as to prove the operator 4 is a proper mapping. 

The second part of the proof is geometric and consists in constructing 
canonical coordinate transformations carrying the singular points of A into the 
singular points of the global fold map B, and similarly for the singular values. The 
same scheme but with somewhat different estimates in the analytical part yields 
the stated result for the operator 21. 
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