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THE I2-INDEX THEOREM FOR HOMOGENEOUS SPACES 
BY ALAIN CONNES AND HENRI MOSCOVICI 

The geometric realization of the irreducible square integrable representa­
tions for semisimple Lie groups (cf. [3], [6] ) and also for nilpotent Lie groups 
[5] suggests that, as a general phenomenon, such representations should appear 
as L2 -kernels of invariant elliptic operators. One basic problem in this respect is 
to decide when such a kernel is nonzero. In the compact case the basic tool for 
this, used in the Borel-Weil-Bott approach, is the Hirzebruch-Riemann-Roch theo­
rem. In the noncompact case one needs an analogue of the index theorem of 
Atiyah-Singer [2] for noncompact manifolds. When G possesses a discrete co-
compact subgroup, the L2-index theorem for covering spaces of [1] and [7] pro­
vides the required analogue. Our purpose here is to give a general index theorem 
for homogeneous spaces of arbitrary connected unimodular Lie groups, essentially 
based on the index theorem for foliations [4]. 

So let G be a connected unimodular Lie group, and let H be a closed sub­
group of G which contains the center Z of G and such that H/Z is compact. 
Let x be a character of Z, and let E, F be finite-dimensional unitary representa­
tions of H whose restrictions to Z are given by x- Denote by E, F the corre­
sponding (invariant) induced bundles on the homogeneous space M = G/H, and 
let D be an invariant elliptic differential operator from E to F. The representa­
tion of G in the kernel of D in L2(M, E) is square integrable modulo the center 
of G (see [4]), though not necessarily irreducible. Its formal degree deg(Ker D) 
(as defined in [4]) is always finite, so that the analytical index of D can be de­
fined as 

Ind(D) = deg(Ker D) - deg(Ker D*). 

We now describe the topological index of D. Let M be an Ad H invariant 
supplement for Lie (H) in Lie (G). We can assume, dividing by Ker x> that H is 
compact. The principal symbol of D defines an element oD of KH(M*)9 the 
equivariant J^-theory with compact support of the dual vector space M* of M. 
Using the Thorn isomorphism at the level of the rational cohomology of the 
classifying space for H, one gets a natural map r from KH(M*) to the comple­
tion (R(H) ® Q)A of the representation ring of H. Let then H£(M, R) be the 
cohomology ring of G-invariant differential forms on the homogeneous space M. 
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For each finite-dimensional representation E of H9 the curvature 2mSlE of the 
corresponding induced bundle on M (with respect to the invariant connection de­
fined by M) allows to define an element co(E) of HQ(M, R) represented by the 
invariant differential form: 

o)(E) = Trace(exp(lQj5.)). 

This map co extends to a homomorphism of (R(H) ® Q)A to HQ(M, R). Put 

ch D = CO(T(OD)). 

Further, let 2mQ, be the curvature of the complexification of the tangent bundle 
of M (with respect to the invariant connection given by M), and let 

TdWc> = d e t l - e x " ( - f t ) 

be the corresponding Todd class. Let dg be the chosen invariant volume element 
on G/Z, let dh be the invariant volume element of total mass 1 on H/Z and let 
v E A"(M) be such that (dg/dh, v) = 1. With the above notations we have: 

THEOREM. deg(Ker D) - deg(Ker £>*) = <ch(D)Td(Mc), v). 

When G has a discrete torsion free cocompact subgroup T the theorem 
follows from the L2 -index theorem for covering spaces of [1], [7] applied to 
the action of T on GjH. In general (for instance for the obvious semidirect 
product of the Heisenberg group by SZ(2, R) or for general nilpotent Lie groups) 
such a T does not exist in G. As a substitute for [1] we use the index theorem 
for foliations [4]. 

To construct the foliation we let V be the compact manifold r\SZ((3), 
where (3 is the Lie algebra of G and T is a discrete torsion free cocompact sub­
group of SL(®). The adjoint representation of G on ® determines a Lie iso­
morphism of G/Z into SL(@) and hence an action of G/Z on V. Dividing V by 
the action of H gives a compact manifold, foliated by the quotient $ of the ac­
tion of G/Z on V. The only serious problem which arises in applying to this 
foliation the result of [4] is that the bundles E, F on G/H only define "projec­
tive bundles" on V/H so that a slight generalization of [4] is required. 

At first glance the natural approach to this index theorem seemed to be: 
(1) the development of a G-invariant pseudo-differential calculus on the homo­
geneous space M; (2) the use of the heat equation method to compute the index 
of special operators; (3) A'-theory arguments on ^ ( M * ) to reach the general 
case. In each of these steps our method turns out to be more effective: in (1) 
and (2) because the local triviality of the foliation $ allows us to use the well-
established local computations, and in (3) because the ̂ -theory of T4> (the tan­
gent bundle to the leaves) is indeed generated by the symbol of the signature 
operator, which is not the case for A^M*), as an R(H)-module. 
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Details and applications will appear elsewhere. 
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