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The theory of the group ring has a peculiar history. In some sense, it goes 
back to the 1890's, but it has emerged as a separate focus of study only in 
relatively recent times. We start with the early development of the theory of 
representations of finite groups over the complex field. Most people familiar 
with this think immediately of Frobenius and Burnside, who used approaches 
that seem unsuitable and even bizarre in the light of modern treatments. 
Admittedly, Frobenius' group determinant and Burnside's Lie-theoretic ap­
proach both yielded the basic properties of complex characters. However, 
they said much less about the representations themselves. For this reason, they 
have little application to the important problems of finding properties of 
representations over other rings-representations over fields of finite character­
istic and over rings of algebraic integers have very important applications in 
group theory, algebraic number theory and topology. Hence, a more flexible 
approach was needed. In fact, the groundwork was being done by the 
little-known Estonian innovator Theodor Molien. Molien developed a theory 
of algebras over the complex field that included many of the features of the 
more general theory later developed by Wedderburn. He applied his theory to 
the case of representations of groups as follows: the Cay ley representation of 
a finite group G as a permutation group on itself can be linearized to obtain a 
faithful representation of G in GL(AZ, Q, where n is the order of G. The linear 
span of the image of this representation is a subalgebra of the algebra of 
n X n matrices. When it is analyzed by Molien's methods, the basic proper­
ties of the irreducible characters are deduced from properties of the irreduc­
ible representations. 

This useful point of view lay dormant until the late 1920's, when Emmy 
Noether considered group representations as an illustration of her results on 
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rings and modules. Her approach went to a new level of abstraction. Instead 
of the enveloping algebra of the regular representation, the group ring as it is 
now defined appeared. We may as well define it in full generality: let R be 
any associative ring, G any group (not necessarily finite). The group ring RG 
is the free /^-module on the elements of G, with multiplication induced by 
that of G. That is, RG consists of formal sums 2 g e G agG, with all but finitely 
many ag = 0 subject to 

(i) 2 agg = 2 bgg if and only if ag = bg for all g. 
(ii) 2 agg + 2 bgg = 2 (ag + bg)g. 
(iii) 2 (agg)(2 bhh) = 2 ctt, where ct = 2g / l = , ag/v 

For those accustomed to the view of group algebras adopted by functional 
analysts, one can consider RG as the set of functions from G to R which are 
zero at all but finitely many places, with pointwise addition and convolution 
as multiplication. Once this definition has been made, the representations of 
G on iÊ-modules can be viewed as (RG, i*)-bimodules (plain left .RG-modules 
suffice when R is commutative, which is the case almost always considered). 

Thus, we have a mechanism that facilitates representation theory. However, 
we get a great bonus. We now have a class of rings in which calculation is 
relatively easy. So, we can ask how the ring-theoretic properties of RG are 
influenced by those of R and by the group-theoretic properties of G, and 
conversely. Also, we have a proving ground for conjectures about rings. It is 
this bonus that has been exploited in recent years. 

Let us survey briefly some of the topics that have been studied in this area. 
For more complete information, the reader should consult D. S. Passman's 
book Algebraic structure of group rings, Interscience, New York, 1977 or his 
survey paper, Advances in group rings, Israel J. Math. 19 (1974), 67-107. 
Perhaps the problem of greatest notoriety in the theory is the semisimplicity 
problem. Thus, let J(RG) denote the Jacobson radical of RG (i.e. the 
intersection of its maximal left ideals). The problem is to tell when J(RG) = 
0. The famous theorem of Maschke handles the case of KG, with K a field 
and G finite. If the characteristic of K is zero, KG is semisimple for all finite 
G. If K has positive characteristic/?, then J(KG) = 0 if and only ifp does not 
divide the order of G. For infinite groups, the problem is open, although 
many cases have been attacked successfully. The best known result was 
proved by Amitsur in 1959: if K has characteristic zero and is not algebraic 
over the rationals, then KG is semisimple, for all groups G. Passman and 
Chalabi obtained an analogous result in finite characteristic: if K has char­
acteristic p but is not algebraic over the integers modulo p, and if G has no 
elements of order/?, then J(KG) = 0. There are also some special classes of 
groups for which the problem has been solved. Hampton, Passman and 
Zalesskiï solved the problem when K is of finite characteristic p and G is 
solvable. Also in characteristic p, Zalesskiï and Passman solved the problem 
for linear groups also in characteristic/?. 

A related problem is that of primitivity. A ring is left primitive if it has a 
faithful, irreducible left module. For some time, it was not known whether 
any primitive group algebras existed. In 1972, Formanek and Snider showed 
that if G is locally finite and countable, then KG is primitive if and only if 
J(KG) = 0 and every nonidentity element of G has infinitely many distinct 
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conjugates. Hence, if G is the "infinite symmetric group" (the group of those 
permutations of a countable set that leave all but finitely many elements 
fixed), and K is, say, the complex field, then KG is primitive. Perhaps more 
surprisingly, they showed that for any KG, there is a group H containing G 
such that KH is primitive. The following year, Formanek showed that if A 
and B are nontrivial groups, not both of order two, then RG is primitive, 
where G is the free product A * B and R is a ring without zero divisors, 
whose cardinality does not exceed that of G. By the way, this sensitivity to the 
cardinality of the coefficient ring is a real concern. For, it can be shown that 
if G = Z X (Z * Z) (Z the additive group of integers) and K is a field, then 
KG is primitive if and only if K is countable. 

There are, of course, many other classes of rings defined by ideal-theoretic 
properties. Many of these have been investigated for group algebras. For 
example, Connell, in his remarkable paper On the group ring, Canad. J. Math. 
15 (1963), 650-685, showed that KG is prime (meaning that the product of 
any two nonzero ideals is nonzero) if and only if A(G) = { g E G\g has only 
finitely many conjugates) is torsionfree abelian. Passman analogously char­
acterized those group rings that are semiprime (i.e. subdirect products of 
prime rings). 

In other directions, one can look at properties of single elements. In any 
ring, it is always interesting to know the idempotent elements (those that are 
their own squares) and the nilpotent elements (those having a power equal to 
zero). Passman and Connell obtained necessary conditions for elements to be 
nilpotent, and consequently, sufficient conditions for the group ring to have 
no nonzero nil ideals (ideals consisting entirely of nilpotent elements). About 
idempotents, there are some very amusing results. Kaplansky showed in 1969 
that if K has characteristic zero, and 0 ^ e E KG is idempotent, then 0 < 
tr(e) < 1 and tr(e) = 1 if and only if e = 1. Here, tr(e) is simply the 
coefficient of the identity element of G in e. This has the consequence that 
KG is von Neumann finite-if a/3 = 1 in KG, then fia = 1. In 1972, Zalesskiï 
showed that tr(e) is actually a rational number, in the case considered by 
Kaplansky, and that it is in GF(p) if K has characteristic p. Along more 
global lines, Formanek showed in 1973 that if K has characteristic 0 and if 
x E G can be conjugate to xn only when n = ± 1, then KG has no nontrivial 
idempotents. 

There has also been interest in the problem of group algebras that satisfy 
polynomial identities. If R is an algebra over a field K, we say that R satisfies 
a polynomial identity of degree n if there is a polynomial f(Xx,..., Xk) of 
degree n over K, in noncommuting variables, such that f(ax,..., ak) = 0 for 
all ax,..., ak E R. For instance, a commutative ^-algebra satisfies XXX2 — 
X2XX = 0; indeed, satisfaction of such identity is regarded as a suitable 
generalization of commutativity by many ring theorists. The basic result on 
polynomial identities, proved by Isaacs and Passman in 1964, asserts that if K 
has characteristic zero and KG satisfies a polynomial identity of degree n, 
then G has an abelian subgroup A whose index in G is bounded by a function 
of n alone. Passman further showed that [G: A(G)] < n/2 and that A(G) has 
finite commutator subgroup. These matters are also connected with bounds 
on the dimensions of the irreducible ^G-modules. 
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One could go on at great length citing further results of great interest. 
However, the specialists know them, and the nonspecialists are probably close 
to shell-shock, so let us remark on only one more thing. It is clearly important 
to know whether the group ring determines the group and the ring. There has 
been much effort spent in considering this (slightly weaker) form of the 
problem: if RG and RH are isomorphic, are G and H isomorphic? The 
answer is clearly negative in general. For example, if G and H are finite 
abelian groups of the same order, then CG and CH are isomorphic. However, 
their rational group algebras are distinct, as was shown by Perlis and Walker 
in 1950. So, there remains the hope that distinct groups have distinct group 
rings over some reasonable coefficient ring. One might even have hoped that 
a coefficient field could be used. Unfortunately, Dade threw a considerable 
quantity of cold water on this dream in 1971, when he produced two 
nonisomorphic finite groups that have isomorphic group algebras over every 
field. However, there remains the outstanding problem: does ZG « ZH 
imply G s HI The answer is known to be affirmative for many classes of 
groups. 

Sehgal has written an interesting and useful monograph. It is not, and does 
not claim to be, a comprehensive volume. Rather, he has collected many 
results on the research topics pursued by him and his school. As such, it 
should be viewed as a supplement to the book of Passman mentioned above. 
However, it has a separate identity, since it deals extensively with coefficient 
rings that are not fields, an area that Passman seldom mentions. 

The book starts with a discussion of idempotents. In addition to the basic 
results of Zalesskiï and Passman cited above, there is a discussion of the 
refinements due to Bass, Cliff and Sehgal, giving deeper information about 
the rational number tr(e) and related quantities. Also, there are discussions of 
when RG has nontrivial idempotents, and of the coefficients of central 
idempotents. Next comes one of two (separated) chapters on units. Recall 
that a unit of a ring R is an element that has a two-sided multiplicative 
inverse, and that the set of all such forms a group U(R). In the group ring 
case, U(RG) contains a subgroup isomorphic to G, and one can ask myriad 
questions about the relationship between these groups. Generally, one wants 
to know how much bigger U(RG) is than G. So, one searches for so-called 
nontrivial units, i.e. those not of the form rg, with r G U(R) and g G G. One 
can also inquire as to when any given group-theoretic property appears in 
U(RG). One old but satisfying theorem in this area was supplied by G. 
Higman in 1940: if G is a torsion group, then U(ZG) = { ± g | g G G } i f and 
only if G is either abelian of exponent four or six, or a Hamiltonian 2-group. 
Sehgal provides a complete proof of this theorem. Further, he shows that 
these are exactly the conditions under which UÇLG) is periodic. 

The other chapter on units (which appears as Chapter VI) deals with group 
theoretic properties of U(RG). After a discussion of some rather technical 
problems, there is a complete presentation of the characterization by Seghal 
and Zassenhaus of those groups G for which U(ZG) is nilpotent. Also 
presented are Bateman's conditions for U(KG) to be solvable (which apply 
when G is finite and K is a field), some results on when U(RG) is an 
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FC-group (one in which the conjugacy classes are finite), and on normal 
subgroups of U(Z/nZ[G]). 

The third chapter of the book concerns the isomorphism problem discussed 
earlier, i.e. the problem of determining when RG » RH implies G » H. 
Many basic results are discussed, but Dade's important example is unfor­
tunately omitted. Chapter IV deals with the related problem of uniqueness of 
the coefficient ring: does RG a SG imply R a SI As for the isomorphism 
problem, it is easy to see that the answer is negative in general, but one may 
still search for special conditions under which it becomes affirmative. Since 
little is known about this problem, the author confines his attention to the 
case where G = <x> is infinite cyclic. Hence, RG in this case is the ring 
/?<*> = R[x, x~l] of Laurent polynomials over R. For this special context, 
some results of Sehgal and Parmenter are presented, which show the answer 
to the uniqueness problem to be affirmative for some special classes of rings 
(perfect, commutative von Neumann regular, commutative local and a few 
others). 

Further, there is a chapter on Lie properties of KG. Here, KG is viewed as a 
Lie algebra by the usual device of defining [a, b] = ab — ba. One may then 
ask for conditions that KG be solvable, nilpotent or whatever, when viewed as 
a Lie algebra in this fashion. As a sample, we cite the theorem of Passi, 
Passman and Sehgal: let K have characteristic/? > 0. Then KG is Lie solvable 
if and only if G is /?-abelian, if p ^ 2 or p = 2 and G has a 2-abelian 
subgroup of index at most two. (Here, G is called /?-abelian if its derived 
group is a finite/?-group; 0-abelian if it is abelian in the usual sense.) 

The book concludes with a compilation of research problems which were 
stated at various points in the text. Forty-two such problems (of clearly 
variable difficulty) are nicely organized, with comments showing the connec­
tions between them. This chapter should be very useful for researchers in the 
field (especially beginners), and the author is to be congratulated for provid­
ing it. 

The entire book is well written and carefully organized. It is inherent in the 
material that some of the proofs are computational and somewhat boring, but 
the dilettante can easily skip over the tedious parts, and follow the flow of 
ideas. The format and typography are uninspired, but straightforward enough 
to be undistracting. In all, this book is quite pleasing, as specialized works go, 
and I think that anyone with any interest in group rings will find some 
valuable nuggets in it. 
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K-theoty, an introduction, by Max Karoubi, Springer-Verlag, Berlin, Heidel­
berg, New York, 1978, xviii + 308 pp., $39.00. 

What is a real vector space of dimension — 2? What is an abelian group of 
order 1/3? Assuming that the reviewer retains some measure of sanity, which 


