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more elementary or, at least, less condensed exposition is possible. 
Lectures on closed geodesies is an uncompromising, essentially self-con­

tained, exposition of the Hubert manifold approach to Morse theory on 
/\M. In addition, Lyusternik's method of subordinated homology classes is 
developed and used when needed. Chapter 3, whose central theme is the 
index theorem, includes extensive material on symplectic geometry and the 
Poincaré map which has not previously appeared in book form. Included in 
the last chapter is a far ranging report on manifolds of elliptic and hyperbolic 
type, integrable and Anosov geodesic flows, and manifolds without conjugate 
points. An appendix gives more elementary proofs of the Lyusternik-Fet and 
Lyusternik-Schnirelmann theorems. J. Moser and J. Sacks have contributed 
sections, respectively, on the Birkhoff-Lewis fixed point theorem and Sulli­
van's theory of minimal models. 

So if this is the most up-to-date, most complete exposition available, where 
is a student to begin? Certainly not here. A more reasonable route into the 
calculus of variations in the large (periodic geodesic division) would be to 
start with Smale's review [8], then Milnor's Morse Theory [5], followed by 
Seifert-Threlfall [7], Alber's Uspehi surveys [1] and [2] (the difference between 
the 1957 and 1970 ones is historically interesting), and then, perhaps in 
conjunction with a stay in Bonn where Klingenberg gathers an active group 
of students and coworkers, Lectures on closed geodesies. 

REFERENCES 

1. S. I. Alber, On periodicity problems in the calculus of variations in the large, Uspehi Mat. 
Nauk 12 (1957), 57-124; English Transi, Amer. Math. Soc. Transi. (2) 14 (1960), 107-172. 

2. , The topology of functional manifolds and the calculus of variations in the large, 
Uspehi Mat. Nauk 25 (1970), 57-122 = Russian Math. Surveys 25 (1970), 51-177. 

3.1. Berstein and T. Ganea, Homotopical nipotency, Illinois J. Math. 5 (1961), 99-130. 
4. D. Gromoll and W. Meyer, Periodic geodesies on compact Riemannian manifolds, J. Differen­

tial Geometry 3 (1969), 493-510. 
5. J. Milnor, Morse theory, Ann. of Math. Studies,No. 51, Princeton Univ. Press, Princeton, 

N. J., 1963. 
6. H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 

(1905), 237-274. 
7. H. Seifert and W. Threlfall, Variationsrechnung im Grossen, Teubner, Leipzig, 1938. 
8. S. Smale, Global variational analysis: Weierstrass integrals on a Riemannian manifold, by 

Marston Morse, Bull. Amer. Math. Soc. 83 (1977), 683-693. 
LEON GREEN 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 1, Number 3, May 1979 
© 1979 American Mathematical Society 
0002-9904/79/0000-0220/$02.00 

Optimal stopping rules, by A. N. Shiryayev, Applications of Math. vol. 8, 
Springer-Verlag, New York, Heidelberg, Berlin, x + 217 pp., $24.80. 

In the general optimal stopping problem one imagines a gambler observing 
the outcomes of a sequence of games of chance. The fortune of the gambler 
depends on these outcomes, and after the nth game in the sequence it equals 
fn (n = 1,2,... ). The gambler cannot influence the outcomes of the various 
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games, but he can quit playing whenever he wants. If he quits at the time T, 
which may depend on how well he is doing, his terminal fortune is fT. The 
problem of optimal stopping is to determine that stopping time (if one exists) 
which maximizes the gambler's expected terminal fortune E(fT). 

Optimal stopping theory has its roots in the theory of sequential statistical 
analysis developed by A. Wald [7] and his colleagues during and following 
World War II. In brief, one collects data having some statistical regularity 
which is not immediately discernible due to the presence of random fluctua­
tions. An important consideration in experimental design is the amount of 
data which will allow one to see through the noise to the underlying pattern. 
In some experimental situations the data become available over a period of 
time, and it may be advantageous to choose a time to terminate the experi­
ment based on the data which have already been observed. For example, in a 
clinical trial to compare two antitoxins for snakebite, one might take 2n 
persons who have been bitten, treat half of them with each antitoxin, and 
conclude that one is better if its success rate is sufficiently higher than the 
other. Of course, if the two are about equally efficacious, it will require more 
data than if one is vastly superior. In absence of a priori knowledge of which 
of these situations prevails, it makes sense to allow data collected early in the 
clinical trial to indicate the amount of data necessary to reach a reasonable 
decision. The scientist or engineer seeking to terminate his experiment at the 
most propitious instant to maximize the available information per unit cost is 
vaguely analogous to the gambler seeking to maximize his expected terminal 
fortune, and indeed with more specific assumptions, the "real world" problem 
of this paragraph and the hypothetical problem of the first paragraph become 
identical. 

For purposes of a brief review it is best to leave the "real world" behind 
and return to our gambler. The following (fortunately pathological) example 
indicates some of the intriguing problems which form the subject matter of 
this book. Suppose that a fair coin is tossed repeatedly, and after the nth toss 
our gambler's fortune is fn = n2"/(n + 1) or fH = 0 according as all n tosses 
have been heads or at least one toss has been tails. Some reflection shows that 
the only stopping times that need be considered are Tn = min(T, n)9 n = 
1,2,... , where T denotes the time at which the first tail appears. Then 
EfTn = Efn = nln/{n + 1) • 2~"tl> although EfT = 0. Moreover, a gambler 
who has observed only heads on the first n tosses has a conditional expected 
fortune after n + 1 tosses of 

*V,M> o) - (£$*«• HTTTT)2"
 =/-

so it would be "foolish" to stop without making at least one more observa­
tion. This simple example shows that (i) an optimal stopping time may fail to 
exist, (ii) behaving optimally in the short run can lead to disaster in the long 
run, and (iii) the limit of a sequence of increasingly better rules can be a very 
poor rule. Taking f'n = 1 — ƒ„ shows one can make money eventually 
although one plays a sequence of unfavorable games. The purpose of the 
theory of optimal stopping rules is to produce a general framework which 
allows one to solve important stopping rule problems while revealing those 
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pathological cases which produce the difficulties of the preceding example. 
Optimal stopping rules is a substantial revision of the same author's earlier 

monograph Statistical sequential analysis [5]. It contains a chapter on 
mathematical preliminaries, chapters on optimal stopping for discrete time 
and continuous time processes, and a final chapter on applications to 
mathematical statistics. 

Optimal stopping theory in discrete time is a fairly complete subject. 
Questions of the existence and computation of optimal stopping rules seem to 
be understood qualitatively, although the number of cases in which one can 
write down the optimal rule with pencil and paper remains small. Shiryayev 
gives a thorough account of these results. Perhaps the dominant feature of his 
exposition is his restriction to sequential games having a stationary 
Markovian structure. He later shows how apparently more general problems 
can be viewed in this framework, so in the end nothing has been lost. But 
initially the additional structure tends to obscure ideas which are true very 
generally. The fundamental concept of this part of the subject is what has 
come to be called the "optimality principle of dynamic programming," which 
made its first appearance in the classic papers of Wald [6] and Arrow, 
Blackwell, and Girshick [1]. In words it states that the gambler should stop 
with fn if and only if this fortune is at least as large as the conditional 
expected fortune given the outcomes of the first n games of a gambler who 
always plays at least n + 1 games and uses an optimal stopping rule there­
after. 

The first part of the chapter on continuous time problems contains results 
analogous to the discrete time theory, but the proofs are much more techni­
cal. Here one sees a justification for restricting things to Markovian problems, 
for which the necessary technical machinery is available. There is an addi­
tional feature of the continuous time theory, which has no analogue in 
discrete time, and that is the possibility of computing nontrivial solutions with 
pencil and paper. Discrete time stopping problems involve nonlinear integral 
equations, which often are difficult to solve even by computer. In continuous 
time these frequently become familiar (partial) differential equations, and the 
nonlinearity appears as a free boundary (Stefan) condition. The chapter on 
continuous time provides a brief introduction to this free boundary theory, 
which is discussed in slightly more detail in the final chapter on applications. 
The computational possibilities in continuous time seem the most interesting 
of the remaining open problems of optimal stopping theory. 

The book on the whole is very well written. I have only one reservation (in 
addition to that previously mentioned concerning the early restriction to 
Markovian problems). The author has chosen to write a book containing a 
large number of theorems which are applied to a fairly small number of 
concrete problems, and most of these appear in the final chapter. This has the 
effect of making the subject seem less vital and more complete than it is. 
Examples of applications that I would have liked to see discussed are the 
recent elegant paper of R. Berk [2] and something from the series of profound 
papers of H. Chernoff on optimal stopping problems for Brownian motion 
(cf. [3]). (In making this criticism, I should also express my philosophical 
position that concrete problems are the life blood of any mathematical 
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subject, and that probability theorists should attempt to preserve the interac­
tion between concrete and abstract which makes their subject both useful and 
fascinating.) 

The book seems to have been written carefully. I did observe the following 
two errors. In proving that Px{re < 00} = 1 on p. 46, the author seems to 
have ignored the possibility that lim sup g(xn) = lim sup v(xn) = — 00, in 
which case it does not follow that g(xn) > v(xn) — e for some n. (A correct 
version of this argument is given on [4, p. 79].) On p. 91, it may be that 
M*g(xTJ is undefined-see [4, p. 112]. I was also slightly puzzled by the 
assumptions underlying the example on p. 99. I believe that Shiryayev has 
tacitly assumed that the random variable £ is bounded, so that the assumption 
I g(x)\ < G < 00 on p. 94 and its consequences can be invoked. This assump­
tion is much stronger than necessary, and it can easily be weakened. It is 
interesting that removing it completely has never been accomplished as an 
application of any general theorem but through a tour de force invented for 
that purpose by D. Burdick [4, p. 57]. 

The translation is generally good. It does contain some unconventional 
choices of words which should cause no problems. One example is the 
repeated use of "independent and uniformly distributed" to mean "indepen­
dent and identically distributed." 

In summary, the book gives an elegant exposition of a fascinating and 
important albeit specialized subject. It may be viewed as an introduction to 
dynamic programming ideas in their simplest nontrivial setting, and this 
should give the book wider readership. 
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