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After its inception as part of Bernhard Riemann's new function theory, 
Algebraic Geometry quickly became a central area of nineteenth century 
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mathematics. The theory of "abelian functions" (that is, meromorphic 
functions on an algebraic complex torus) was regarded as an acme of 
function theoretic thought and at the very heart of this beautiful creation of 
the German school. It was also recognized that earlier mathematicians such 
as Legendre, Euler, Abel, Gauss, and Jacobi (to name a few of the more 
outstanding) had made substantial contributions to the subject, albeit in a 
purely function-theoretic and analytic disguise. Moreover, number theorists 
and arithmeticians began to sense connections between their interests on the 
one hand and function theory on compact Riemann surfaces on the other. 
(Riemann had proved such surfaces to be algebraic.) In this regard, there was 
a whole flurry of contributions by the likes of Eisenstein, Kummer, Kronec-
ker, Weber, Fueter, and Hensel-not to mention the redoubtable Hubert. 

Algebraic Geometry was a very active area in the late nineteenth century, 
especially with the added significant results of Picard, Hurwitz, Klein, and 
Poincaré. The German School of Brill and Noether created a predominantly 
geometric theory of one-dimensional algebraic varieties (that is, of two-
dimensional spaces over the reals which arise as the set of zeros of complex 
polynomials either in ordinary space or in projective space). They understood 
how to "resolve" singularities (so that the resulting variety would be a 
one-dimensional complex analytic manifold in the present day sense), how to 
compute the numerical invariants associated to their varieties, and they began 
to scratch the surface in a theory of higher dimensional phenomena. 

Starting about 1890, the brilliant Italian School studied mainly algebraic 
varieties of dimension two. The phenomena here were much more compli­
cated and bewildering than in the case of compact Riemann surfaces. 
Nevertheless, with a staggering geometric insight, no doubt sharpened by 
encounters with innumerable examples, the Italian school uncovered the 
major phenomena and introduced extremely fruitful methods into the subject. 
They discovered numerical criteria for when the function theory on an 
algebraic surface was the same as the function theory on the projective plane 
(Castelnuovo's criterion of rationality), numerical criteria for when the 
function theory on an algebraic surface was the same as that on a projective 
fibre bundle (with fibre P1) over a compact Riemann surface (Enriques' 
criterion of ruledness), numerical criteria for the contractibility of a curve in a 
surface to a point so that the resulting surface remained a manifold, and they 
gave a classification of surfaces by the values of certain invariants. 

Unfortunately, their results were complicated by the fact that they regarded 
two algebraic varieties as "the same" when they possessed the same field of 
meromorphic functions (birational equivalence) rather than when they were 
geometrically isomorphic. While the Italians recognized this and attempted to 
deal with it, they were only partially successful, and this only for algebraic 
surfaces. Moreover, this difference between algebraic geometry and the other 
geometric theories then in formation led to a serious lack of communication 
between algebraic geometry and these other geometric theories. It caused 
algebraic geometry to lose its central place in mathematics. There was also a 
problem of rigor in the proofs of the Italian School. The Italian proofs were 
permeated with strong geometric inventiveness and insight, but they some­
times lacked crucial details and frequently contained appeals to geometric 
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intuition. Corrective measures were instituted by Zariski, Weil and others as 
we shall explain later. 

Despite the above problems, cross-fertilization still took place. Poincaré 
made a beginning, but it fell to Lefschetz to "plant the harpoon of algebraic 
topology into the body of the whale of algebraic geometry" [3]. Almost 
simultaneously, E. Artin translated Riemann's famous hypothesis to the case 
of algebraic curves over a finite field, and he succeeded in proving it for the 
simplest curve, the projective line. Fifteen years later, Hasse proved it for an 
elliptic curve (i.e., the analog of a one-dimensional torus). Then, in 1940, A. 
Weil, who had already done fundamental work in the area where algebraic 
number theory and algebraic geometry meet, announced a proof valid for all 
curves. The proof was algebro-geometric but it used constructs and ideas of 
the complex-analytic case (intersection theory, homology theory, and comp­
lex tori). In a brilliant tour-de-force, Weil provided the foundations of an 
intersection theory [6], and succeeded in constructing the analogs of tori and 
the relevant homology theory necessary for his proof [7], [8]. Moreover, a few 
years later (1949) he was led to his celebrated conjectures on analogous 
questions for higher dimensional varieties. 

While all this was taking place on the number theoretic front, Zariski, in 
the early 1930s, undertook to summarize and codify the Italian contributions 
to surface theory. In his words, "I succeeded, but at a price", [9]. The price 
was his personal loss of confidence in the validity of the Italian proofs and his 
consequent resolve that the whole edifice had to be rebuilt on purely 
algebraic foundations. But his loss was our gain. The required commutative 
algebra was largely nonexistent at the time; so, Zariski created, and stimula­
ted others to create, large chunks of the current subject of commutative 
algebra. He redid the Italian theory from the ground up and succeeded in: 

(a) giving the first complete proofs of the resolution of singularities for 
dimensions two and three by purely algebraic methods (in characteristic 
zero); 

(b) constructing a theory of birational transformations ("Zariski's Main 
Theorem") and an algebraic theory of when a variety was a manifold; 

(c) creating a beautiful theory of holomorphic functions (over arbitrary 
fields) and analytic continuation along algebraic subvarieties-culminating in 
a proof of the connectedness principle; 

(d) proving the Castelnuovo rationality criterion, the Enriques ruledness 
criterion, and the theorems on minimal models for surfaces-all by purely 
algebraic means valid in all characteristics; 

(e) stimulating a group of extremely gifted students to make wonderful 
contributions of their own. 

These successes also came at a price. For, all of Zariski's results were 
heavily algebraic in nature and some argued that they were excessively 
algebraic. Lefschetz [3] remarked that while he had contributed to "algebraic 
GEOMETRY", the modern school (Zariski and Weil) seemed to be studying 
"ALGEBRAIC geometry". This further increased the distance between the 
great geometric creations of the twientieth century-differential geometry and 
differential and algebraic topology-on the one hand, and algebraic geometry 
on the other. No less a contributor than David Mumford has remarked that 
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as a student he struggled to "see any geometry at all behind the algebra" [9, 
(introduction)]. How much more must have been the confusion of less gifted 
and less committed individuals? The centrality of algebraic geometry had 
been further eroded by lack of communication. 

Nevertheless, important progress was made, in the geometric spirit, on the 
complex analytic side. This was done notably by Hodge (early 1940s), by 
Kodaira and Kodaira-Spencer (late 1940s and throughout the 1950s), and by 
the infusion of newly developed algebraic and geometric topology into 
algebraic geometry. Hirzebruch's proof of the general Riemann-Roch Theo­
rem (1953) spearheaded this infusion. Algebraic Topology had also invaded 
pure algebra, precipitating a revolution of sorts, yielding a flurry of new 
results, and establishing a new area: homological algebra. Moreover, the 
theory of sheaves was making an impact in the theory of several complex 
variables, and, in retrospect, it was clearly time for a dénouement by synthesis. 
We did not have long to wait. 

The publication of J.-P. Serre's landmark paper Faisceaux algébriques 
cohérents [5] was the beginning of the latest era of algebraic geometry. Serre 
defined varieties on the model of manifolds and showed how sheaves and 
cohomology could be used with the ordinary Zariski topology to prove 
generalizations of old results and deep new results. He stressed the point of 
view of geometric isomorphism as opposed to birational equivalence, and in 
so doing brought algebraic geometry much closer to the other geometric 
theories. In 1957, Grothendieck [1] succeeded in giving a purely algebraic 
proof, valid in all characteristics, of a significant generalization of 
Hirzebruch's Riemann-Roch Theorem. (An independent proof was also given 
by Washnitzer.) Along the way Grothendieck created iC-theory. 

Simultaneously, Grothendieck began a systematic rewriting of the 
foundations of algebraic geometry and a deepening of its results as well as an 
infusion of entirely new techniques. His aims were many fold: 

(a) To include in as natural a geometric setting as possible (i.e., similar to 
the other great geometric theories) all the classical and new results proved in 
an algebraic manner independent of fields and considerations of characteris­
tic; 

(b) to have a sufficiently broad sweep that number theoretic questions 
would be included-one would have to include both the reduction of varieties 
from characteristic zero to characteristic p and the lifting of varieties in the 
opposite direction; 

(c) to introduce in a deeper way than had already occurred the methods of 
algebraic topology (homology, cohomology, and homotopy) into algebraic 
geometry; 

(d) to be able to use methods from other geometric theories and from 
analysis in algebraic geometry-for example, deformation theory, vector fields 
and vector bundles, and a suitable theory of jets; 

(e) to construct a "good" cohomology theory having all the usual formal 
properties so that Weil's blue print could be followed for the proof of the 
Weil conjectures (this unites aims (b) and (c)). 

I think it must be conceded that Grothendieck and the school he created 
have accomplished these aims. Grothendieck's construction of the algebraic 
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fundamental group, the broadening and deepening of this theory to a theory 
of étale homotopy (by Artin and Mazur among others), Grothendieck and 
Artin's construction of étale cohomology and the application to the proof of 
the first three Weil conjectures, Deligne's proof of the Weil-Riemann 
hypothesis (fourth Weil conjecture), Mumford's invariant theory and the 
consequent solution of many moduli problems, and Hironaka's proof of the 
resolution of singularities for all dimensions in characteristic zero are 
achievements of which twientieth century mathematics may be proud. 
Algebraic Geometry, with its incredible riches, has been drawn close once 
again to the main geometric flow of our century. I think it must be further 
conceded that Algebraic Geometry again occupies a central place in present 
day mathematics-all the more so since the wheel has come full circle and 
methods of algebraic geometry such as localization and completion have 
invaded algebraic topology (thanks to Sullivan, Quillen, et al.). There is now 
clear promise of substantial achievements ahead and we live in a time of 
mathematical excitement. 

In view of the incredible history of algebraic geometry, of the plethora of 
its techniques and methods, and of the fantastic interconnections it has with 
the widest and broadest areas of mathematical endeavor, how is one to write 
a text on the subject which will give a fair hint of the above and yet which 
will not be so formidable in either breadth or depth as to overwhelm its 
readers and defeat its very purpose? David Mumford put it very beautifully in 
his preface to the new edition of Zariski's book on surfaces [10]: "The many 
changes in mathematical taste and terminology and our limited knowledge of 
the literature have made all but impossible our task of satisfactorily updating 
Zariski's definitive account of the classical theory of algebraic surfa­
ces Is any potential reader skilled enough to be familiar with all the 
diverse foundations and abstract tools referred to in these appendices, patient 
enough to unwind the tangled relationships between old and new lines of 
argument, indulgent enough to forgive the gaps and gross oversimplifications 
caused by our parochial point of view and interested enough to want to read 
our hodge-podge that jumps back and forth between references and brief 
allusions?" How much more difficult must be the problem when the audience 
is to consist of graduate students just feeling their way into the geometric 
currents of the 20th century, and when the subject matter is to be algebraic 
geometry as a whole? Clearly, compromises must be made and limits must be 
set in any such exposition. But the fundamental problem remains and, in an 
area of mathematics as important as algebraic geometry, it cannot be cav-
ilierly tossed aside. 

I am happy to report that Hartshorne has done an outstanding job in 
meeting these challenges. First, I feel that he has made very reasonable 
compromises. He starts by assuming a modicum of algebraic sophistication of 
his readers and he points for justification to the existence of several excellent 
texts on algebra and commutative algebra. When, some years ago, Zariski 
endeavored to write a volume on algebraic geometry, he had to append so 
much commutative algebra that soon the "tail had wagged the dog". The 
result was his two volume treatise with Samuel on commutative algebra. 
Hartshorne's practice is to state the specialized results he needs as he needs 



558 BOOK REVIEWS 

them and to refer the reader to a number of the standard and readily 
available texts for the proofs. Most readers will not need this help often, but it 
is comforting to have precise references when necessary. Next, Hartshorne 
stays in the Noetherian case which is the important case for most 
applications. Finally, in the statements and proofs of the difficult global 
theorems (coherence of higher direct image sheaves, comparison theorems for 
formal cohomology, Serre Duality Theorem, Stein factorization, connected­
ness principle, and Zariski's Main Theorem), he makes a projectivity 
hypothesis. The projective case contains the essence of these theorems, is not 
at all trivial, and involves fairly representative methods of proof. Moreover, 
the student can specialize to readily visualized cases of these theorems and 
can ponder their meaning without the excess baggage of ultra sophisticated 
methods designed to handle the most general case. 

Secondly, Hartshorne bounds his exposition by repeatedly emphasizing the 
case of ordinary projective varieties over an algebraically closed field. Not 
only is this historically the most important case, but it has the added 
advantage that concrete computations and pictorial representations may be 
made. Time and again after the proof of some general fact, Hartshorne will 
give examples of the theorem in various concrete cases. Often, these examples 
will have been treated earlier by cruder methods. The comparisons are then 
drawn, and the student is elevated ever so gently to a higher stage of 
understanding. 

The book begins with a chapter on varieties. The basic phenomena and 
definitions are covered in a very computational way, and the translation from 
geometry to algebra and back is started. The student begins to sharpen his 
geometric intuition. Many exercises are included-most are not difficult, but 
almost all of them point out an important moral. The next two chapters 
entitled Schemes and Cohomology are the heart of the book. They introduce 
the modern terminology and methods. Large efforts are made through 
examples in the text and the exercises to connect the new language and 
concepts with the more inituitive approach of Chapter I. If I have any qualms 
with the content of the book, they are mainly concentrated in Chapter HI (on 
Cohomology), There is much emphasis on derived functors and categories 
which I feel could have been relegated to an appendix or referred to sources 
as in done with the algebraic preliminaries. Moreover, some effort is spent on 
a vanishing theorem of Grothendieck whose use in the book is very minimal 
(since the thrust of the theorem takes one outside the category of quasi-
coherent sheaves where almost all the geometry takes place). But these 
quibbles are ones of opinion only, they do not vitiate the fact that the 
important cohomological theorems are treated clearly and in detail. The 
examples and exercises are integral parts of the exposition (no pun intended) 
and make the chapter very satisfying indeed. This is especially true in the 
sections on flat and smooth morphisms, for here the classical intuition needs 
shoring up. 

An excellent feature of the book is the last two chapters entitled Curves and 
Surfaces, respectively. By coming down from the abstract to the classical and 
concrete, Hartshorne shows the power and beauty of the methods developed 
in Chapters II and III. More than that, the use of these methods in explicit 
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situations of high interest imbues them with a life which the reader will hardly 
fail to appreciate and will not soon forget. Also, the very beautiful theory of 
curves and surfaces is developed smoothly and with a minimum of technical 
difficulty. Of course, only selected topics of surface theory can be covered. 
Nevertheless, Hartshorne is able to discuss material on ruled surfaces, 
monoidal transformations (including the factorization theorem, resolution of 
singularities, and Castelnuovo's criterion for contractibility of a curve), cubic 
surfaces in P3 (culminating in the 27 lines), and some remarks on the 
classification of surfaces. Once again, the exercises provide essential enrich­
ment and the key to understanding. 

There are three short appendices entitled: Intersection theory, Transcen­
dental methods, and The Weil conjectures. They are elegantly written and 
provide a glimpse of material beyond the confines of the book and near the 
current frontiers of the subject. I would have liked a lengthened treatment in 
all three-they consist of exciting and important mathematics. Each appendix 
cries out for a book length treatment of its own-perhaps someone will take up 
the challenge. Also, I would have liked two more appendices on the style of 
the included three. In my view, they should have been on Deformation theory 
and Group schemes. 

If I may be permitted a personal note at the close of this review, I should 
like to relate that in 1963-1964 I began to write a book on algebraic geometry 
in order to fill the gap which then existed. Independently and simultaneously, 
David Mumford began working on such a project. The plan of these books 
(in a gross way) and of Hartshorne's book was entirely similar: a concrete 
treatment of classical algebraic geometry without sheaves, a treatment of 
sheaves, schemes, and cohomology, and finally applications to a smooth 
treatment of more classical and special topics such as curves and surfaces. To 
my knowledge, Hartshorne came to his idea of the book independently, and I 
guess there were others who quietly toyed with similar ideas. Mumford's 
project first produced his Harvard notes and later (I suspect) his beautiful 
book on curves on a surface [4]. Finally, he has begun the publication of what 
appears to be a series of books on algebraic geometry of which Complex 
projective varieties is the first installment. Of the other silent authors (if they 
exist) I know nothing; of myself, I was stricken with what I may call "writer's 
overconscientiousness". This largely mental ailment has been described by 
Loren Eiseley in his autobiography [2]. While I do not wish to claim the 
grandiose pattern he describes for my own little project, let me quote: "At 
this point two things threaten the researcher (writer). First, he may become so 
lost below ground, trail leading on to trail, that he may never emerge to 
publish. He may be stricken by a phobia of incompleteness.... The drone of 
that buzzing fly, the publisher, recedes into the distances of the future 
Second, as the accompaniment of this retreat, he may no longer care to 
organize this precious knowledge or fix it into a pattern.... Publish? There 
is not t i m e . . . . " So it happened with me, by book was always two-thirds 
finished. 

In the end, I do not mind. Hartshorne has survived the inevitable attack of 
this disease. He has produced a book faithful to the original plan-a book of 
which he may be proud and for which we must be grateful. It is destined to 
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become the standard reference for young workers in and students of algebraic 
geometry. They will be well served. Because algebraic geometry is important 
for so many fields from partial differential equations through complex analy­
sis to number theory and algebra, this book belongs on every mathematician's 
shelf. We owe Hartshorne our thanks. 
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Infinitary combinatorics and the axiom of determinateness > by Eugene M. 
Kleinberg, Lecture Notes in Math., vol. 612, Springer-Verlag, Berlin, 
Heidelberg, New York, 1977, 150 pp.,$8.30. 

Many questions of mathematical interest cannot be answered on the basis 
of ZFC, the standard axiomatization of set theory. Notable examples are the 
Continuum Problem, and the problem of the Lebesgue measurability of PCA 
sets of reals. (PCA sets are the projections of complements of analytic subsets 
of R2.) However, as Gödel suggested in [1], it may be possible to settle such 
problems by extending ZFC. Gödel hoped to find new axioms with the same 
"intrinsic necessity" as those of ZFC. Failing this, he hoped that "there might 
exist axioms so abundant in their verifiable consequences, shedding so much 
light upon a whole field,... that, no matter whether or not they are 
intrinsically necessary, they would have to be accepted at least in the same 
sense as any well-established physical theory." One might call the search for 
and study of such axioms "GödeFs programme"; it is the antithesis of 
Hubert's programme. 

Work on this program has concentrated on two sorts of hypotheses, the 
first sort asserting the existence of certain large cardinal numbers, and the 
second the determinateness of certain definable games. Both sorts can be 
viewed as extrapolations of principles inherent in ZFC, though neither has 


