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An algebra, in the present context, is an associative linear algebra over a 
field K9 and a topological algebra is such an algebra with a suitably related 
topological or quasi-topological structure. This statement requires, of course, 
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considerable clarification and qualification; some of this (but by no means 
enough) will appear in the course of the review. Very often the field K is R or 
C, and in the book of Beckenstein, Narici and Suffel this restriction is 
observed throughout the text; some generalisations are envisaged in the 
exercises. There are indeed problems in abundance in the classical cases, and 
there is much to be said for restricting attention to these cases in a study such 
as this. 

Examples of topological algebras are widespread in analysis. The primary 
example is, of course, provided by the normed algebras (including various 
special types, often separately designated, such as function algebras, operator 
algebras, and the like). These, at least when complete (i.e., Banach algebras), 
have long been established as a useful tool in analysis, as well as rewarding 
subjects for study in their own right. And here we encounter a slight 
terminological ambiguity; sometimes the term topological algebra is used to 
include explicitly the class of normed algebras (there are proceedings of 
symposia on topological algebras that have included little else), and some­
times to include them only implicitly, and with subordinate status. This latter 
convention is probably the more convenient, and is followed in the book and 
its review. The situation is not unlike that of the real numbers as a subset of 
the complexes: it is often convenient to take the reals as known, and then 
develop the theory of the complexes. Here it is assumed that standard results 
in normed algebras are known, and available: the main preoccupation is 
building on that foundation an appropriately generalised structure. It is not in 
fact true that everything in topological algebra theory is a generalisation of 
the normed case; not all topological vector spaces are generalisations of 
normed spaces. But little will be lost by focussing attention on topological 
algebras as generalisations of normed algebras. 

Banach algebras were developed in the late 1930s (mainly by Gelfand and 
his associates, although there were others also). In a very few years they had 
become an indispensable part of modern analysis. To mention only one 
application, existence theorems in harmonic analysis are very conveniently 
based on results from Banach algebra theory. Moreover, the intrinsic simp­
licity of the Banach algebra machinery enables it to be used effectively to 
clear away irrelevant difficulties in harmonic analysis problems, leaving the 
core of 'hard' (often, not all that hard!) analysis to be tackled by other means. 
About the same time, the theory of topological vector spaces was being 
worked out. Banach spaces, within a few years of their formal introduction, 
had turned out to be rather restrictive for the needs of analysis, and were duly 
generalised. This theory of topological vector spaces (locally convex spaces, 
in particular) was appropriate for many applications. One need look no 
farther than the theory of generalised functions (= distributions) for a major 
example. Already, it should perhaps be noted, it was clear no single generali­
sation was appropriate for all contexts. Indeed, one of the main themes of the 
whole development was the realisation that the machinery should usually be 
set up in conformity with the problem. The Hubert space approach, where 
one seeks to put all problems into a standard framework, gave way to a more 
pluralistic (anarchistic?) way of life. In any event, with all these developments 
in progress, it was very natural to suppose that some fusion of the two lines, 
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in a theory of topological algebras, would produce something interesting and 
important. And so it has, up to a point; but to a much more limited extent, 
and with much less impact, than seemed likely at the time (a quarter of a 
century and more ago) of the early developments. It may perhaps be worth 
while to pause for a moment to try to identify the reasons. The basic one is 
probably that the major motivation for studies in topological algebras has 
been, and remains, internal rather than external. There are few problems 
currently studied where a theory of topological algebras more general than 
Banach algebras would be of clear advantage and immediate applicability. 
That is not to say that such problems do not exist (holomorphic functions of 
restricted growth form one important area); but they are not numerous. 
Another reason may be that the primary examples of commutative topologi­
cal algebras that are not Banach algebras are already presented as algebras of 
functions, so that a representation theory is scarcely an immediate necessity. 
And another may well be the virtual absence in general (nonmetrisable) 
topological algebras of 'automatic continuity' results (to which we return at 
the end of the review), such as are available in Banach algebras. This results 
in a much less clean and appealing development in some respects: supple­
mentary hypotheses seem to be rather frequently required. 

To effect a marriage of linear algebras with topological vector spaces 
requires two decisions. First, how general should be the vector space 
topology? and second, how should multiplication relate to the topology? As 
far as the vector space topology is concerned the standard choices are 
available, and have all been used on occasions. Naturally local convexity 
and/or metrisability (usually with completeness thrown in) have been most 
widely assumed. Even here, however, there are awkward problems; we refer 
to one at the end of the review. We shall here use the term Fréchet space to 
mean a complete metrisable topological vector space, without any assumption 
of local convexity: conventions unfortunately differ on this as on many other 
matters of terminology. The Fréchet space properties imply that even if 
multiplication is assumed only to be separately continuous, it must in fact be 
jointly continuous. More significantly, perhaps, the closed graph theorem and 
its consequences hold. Now, in vector space theory it has long been realised 
that results of this kind are true in situations more general than the classical 
one of Fréchet spaces (at least in the convex case); barrelled spaces and fully 
complete spaces are relevant here. Such generalisations in topological 
algebras have been considered and would presumably repay further study. 
For multiplication, it is natural to require from an aesthetic point of view 
(and with the model of a topological group in mind) that in a topological 
algebra the operation is jointly continuous: if x is near x0 and y is near y0 

then xy is near x0y0. Normed algebras certainly enjoy this property. How­
ever, it should be remarked that this assumption of joint continuity of 
multiplication effectively cuts out a class of algebras that one would certainly 
wish to include in any comprehensive theory. Let £ be a topological vector 
space, and L{E) the algebra of continuous linear maps of E into itself. The 
algebra L{E) may be topologised in several ways. From many points of view 
the most natural type of topology is where the basic neighbourhoods of 0 in 
L(E) axe 
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{T;TxEN9VxeB} 
where N is a neighbourhood of 0 in E, and B is a bounded subset of E, 
perhaps further restricted to belong to a subclass 93, of the bounded sets 93; 
for example, 93, might be the compact sets in E. Now, in no such topology 
can multiplication in L{E) be jointly continuous, apart from the case in 
which it is obviously so, namely when E is already a normed space (and the 
topology of L(E) is then defined as usual). The proof is easy, and the result 
well known. The failure of joint continuity in operator algebras in the weak 
topology is, of course, familiar. So it would seem necessary to try to set up a 
theory of topological algebras with separate rather than joint continuity of 
multiplication. In fact not much has been achieved at this level of generality, 
with neither commutativity nor joint continuity. In the book under review 
both commutativity and joint continuity are assumed throughout. And in 
much of the work that has been done conditions more special than joint 
continuity (in particular w-convexity, described below) have proved useful 
One device, used by J. L. Taylor in [5], deserves mention: it enables a 
decision about separate or joint continuity of multiplication (and some other 
properties) to be substantially deferred. Start with a (locally convex) topo­
logical vector space, and let ® be a (general) tensor product. Now define an 

algebra relative to ® to be a locally convex space A with an associative 

operation of multiplication (and a multiplicative identity) such that the map 

(a, b) -* ah of A X A to A extends to a continuous linear map from A ® A 

to A. By appropriate specialisations of ® (e.g. to the completed inductive or 

projective tensor product) the corresponding algebras and modules appear 
with exactly the properties required. 

What can reasonably be expected from a theory of topological algebras? In 
the first place, some kind of structure theory-perhaps not of a very detailed 
kind, in view of the corresponding results (or their absence) for normed 
algebras. One should have a notion of 'simple' topological algebra, and try to 
show more general algebras isomorphic to collections of simple algebras, 
appropriately strung together. In the commutative case the scalar field K 
might seem the obvious candidate for the basic building-block (some qualifi­
cations have to be made: see below)-but what about the noncommutative 
case? In fact, even for Banach algebras, in the noncommutative situation it is 
only in the presence of some extra structure (an involution) that much can be 
said. More should not be expected here. Although the commutative case has 
received its due share of attention, not much has been done in the noncom­
mutative case until recently. Next, one might look for some systematic 
working through of the properties of Banach algebras with a view to charac­
terising the classes of topological algebras that enjoy the properties in 
question. The kind of thing that can be done is typified by the definition of a 
ö-algebra. These are topological algebras in which the invertible elements 
form an open set (we assume an identity element: in its absence the 
customary arrangements or reformulations can be made). Various properties 
of g-algebras are then worked out; for example, spectra are compact and 
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maximal ideals are closed. At the end of it all one should have a good 
classification of topological algebras by their Banach-algebra-like properties. 
Another feature of a 'good* theory is the number and significance of the 
contacts it makes with other branches of mathematics (or-even better-with 
other human activities of a basically nonmathematical character!) It is 
probably true that topological algebras have lost something, as compared 
with Banach algebras, in the richness of their contacts with analysis. They 
may well have compensated by developing closer links with set theory and 
topology. Indeed a significant part of the discussion in the present book is 
devoted to questions of this character. It is an over-simplification-but 
perhaps a not entirely misleading one-to say that the book has much more of 
the character of Gillman and Jerison than of Gelfand, Raikov and Shilov or 
of Naimark. Applications to analysis of the Banach algebra type are not 
touched on. 

The earliest work on topological algebras of the kind now considered 
appears to be due to Richard Arens and Irving Kaplansky in the late 1940s. 
This was developed further both by Arens and by E. A. Michael in his AMS 
memoir [4]. Here the basic condition imposed is that of multiplicative 
convexity (w-convexity): this has continued to be widely used in subsequent 
studies. It is assumed that the topology of the algebra A is given by a set of 
seminorms p( (so that, as a vector space, A is in any case locally convex) 
satisfying the additional condition 

M'y) < Piix)Pi{y) 
for all x9 y E A and all indices i. This implies immediately that in A 
multiplication is jointly continuous. Such an algebra A is said to be locally 
w-convex. Now, the quotient of A by the kernel of pi is in a natural way a 
normed algebra Ai9 with completion Bê. If A is complete, it is exactly the 
projective limit of the Banach algebras Bt; in any event A is dense in this 
projective limit. Thus, especially in the commutative case, questions about 
spectra, inverses and the like can easily be reduced to the corresponding 
questions in the algebras Bi9 where more machinery is available to facilitate 
an answer. It should be remarked however that the relation between A and 
the algebras Bt may involve unexpected complications. The obvious (and 
rather well-behaved) algebras of functions may be somewhat misleading 
examples here. There is an example, due to S. Rolewicz, (and quoted in [7]), 
of a commutative locally m-convex Fréchet algebra A that is semisimple, and 
such that for no possible choice of admissible seminorms pk are all the 
algebras Bi semisimple. Michael's study did much to give direction to 
subsequent work on topological algebras; several of the questions he raised 
have become central problems, and one or two still remain unanswered. 

The difficulties encountered in setting up a satisfactory representation 
theory of topological algebras, even in the commutative case, are already 
present to some extent on the purely algebraic level. Take as an example an 
algebra A that contains a subalgebra isomorphic to the field F of rational 
functions-for instance, A could be the algebra of equivalence-classes of 
almost-everywhere-finite measurable functions on [0, 1], with almost* 
everywhere pointwise operations or, indeed, A could be F itself. Suppose we 
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try to represent such an algebra A as an algebra of (everywhere finite) 
functions on some-presumably large-structure space S. We must necessarily 
fail. Any algebra of functions on S has many characters (by a character we 
mean a nonzero homomorphism A -> K; if A is topological a character is not 
necessarily continuous in general): for each s E S the evaluation map x -» 
x(s) is a character. Our algebra A has no characters at all: for if P is the 
subalgebra of polynomials then any character x restricted to P is evaluation 
at some t E K: x(x) = x(t) for x E P. If any such x were to exist, let t be the 
corresponding point of K and let x be an element of P with x(t) = 0. 
Certainly x is invertible in F: and then 1 = x(l) = x(x)x(x~l) = ^COxC*""1) 
= 0. The conclusion is that if we are to have an adequate representation of a 
commutative algebra over K by X-valued functions on 5, then X has to be 
something other than K itself, in general. 

However, given that there are enough characters, and more particularly 
enough continuous characters, to separate the points of A, a functional 
representation of the familiar kind can be achieved. Such is the case, for 
example, for locally m-convex algebras. In any case algebras of continuous 
functions are of clear interest and importance as (at least) primary examples, 
and have received considerable attention. The first three chapters of 
Beckenstein, Narici and Suffel (half the book) are devoted to these algebras 
and some consequential problems arising from their study. The first chapter is 
on algebras of continuous functions in general, on a topological space, with 
no topology assumed on the functions. In the second chapter the functions 
are given the compact-open topology and studied as a vector space. The 
information obtained here is quite full and detailed in several directions. 
Topological algebras proper are introduced in the fourth chapter (and a 
reader could if he wished begin the book at that point). As already noted, 
these are always commutative and have jointly continuous multiplication. 
The theory is developed as far as some Gelfand-type results on functional 
representations, and gives a very readable account of the basics of the subject 
in the degree of generality selected. 

The last chapter of Topological Algebras introduces a type of algebra that is 
not, strictly speaking, topological at all, but that certainly merits attention. In 
a normed vector space (or algebra) the norm balls are simultaneously 
neighbourhoods and bounded sets. In more general topological vector spaces 
the two must be distinguished; and neighbourhoods have generally been 
taken as primary and bounded sets then defined in terms of them. In fact the 
bounded sets can equally well be taken as the primary structure: there are 
some obvious properties that are normally taken as axioms, such as that a 
subset of a bounded set is bounded and the union of two (or any finite 
number of) bounded sets is bounded, in addition to the properties more 
specific to the algebra structure, that scalar multiples and (finite) sums and 
products of bounded sets should be bounded. Such a structure, based on 
bounded sets, is a homology rather than a topology. Even in the absence of 
any algebraic structure at all, one can define homologies; but it appears that 
only when a suitably rich algebraic structure exists, compatible with the 
homology, is the concept a fruitful one. For vector spaces there is some gain 
in introducing a homology, as a partial dual of a topological structure; in 
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linear algebras the advantages are more substantial. In many contexts, 
boundedness of maps is a natural requirement rather than continuity, and a 
homology gives the appropriate setting. In topological algebra theory, homo­
logies seem to have been first used systematically by Waelbroeck [6]; much 
subsequent work in the same direction has been done. For a recent account 
see [3]. 

It is of course very plausible that any gadget that works in Banach algebras 
should work also-perhaps somewhat modified-in more general topological 
algebras. One development in Banach algebra theory, that has been useful for 
some problems in measure algebras on groups, involves homology and 
cohomology: the basic algebraic framework can be matched with the norm 
structure to produce a satisfactory blend here. For some purposes-app­
lications to functions of several (operator) variables and the corresponding 
spectral theory-further extensions are called for. It turns out that such are 
possible; the technicalities become rather formidable but the basic strategy is 
successful. An account of all this can be found in Taylor's paper [5] already 
mentioned. Another such topic is multiplier theory. 

An important additional structure that an algebra may have, much used 
and deservedly popular in the normed case, is an involution. This is a map 
x -> x* of the algebra on to itself such that x** = x9 (x + y)* = x* + y*9 

(ax)* = ax* for a E R, (ax)* = âx* for a e C, (xy)* = y*x*9 and having 
such continuity properties as may be appropriate. We shall use the term 
star-algebra (*-algebra) for any algebra with an involution, with no 
assumption about continuity (Beckenstein, Narici and Suffel use the term in a 
different sense, as the topological analogue of a £*-algebra). In the normed 
case even rather mild assumptions about the involution enable the theory to 
be carried a long way forward. In topological algebras that are not normed, 
involutions have been studied, but perhaps not as intensively as might have 
been expected. If A is a complete locally m-convex algebra with an involution 
and if the involution and the defining seminomas p are related by 

p(x*x) = (p(x)f, 
then there are good analogues of the results for 2?*-algebras. In general, 
results on Hermitian elements and functionals extend, perhaps with sub­
stantially new proofs. In the commutative case A is isomorphic to the algebra 
of continuous functions on the structure space (space of continuous charac­
ters, suitably topologised), with the topology of uniform convergence on 
equicontinuous subsets. 

Another result that can be extended from normed *-algebras to topological 
*-algebras (not commutative, in general) involves positive functionals. A 
functional ƒ is positive if 

f(x*x) > 0, xEA. 
Then if A is a Fréchet algebra (not assumed convex), with an identity, and 
with a continuous involution, every positive linear functional ƒ on A is 
necessarily continuous. 

This last result is typical of a general class of problems-automatic 
continuity problems-that are as old as the subject and have been much 
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studied in recent years, both for normed and for more general topological 
algebras. When is every homomorphism from one given algebra to another 
necessarily continuous? For a comprehensive account of recent work see [1]. 
(I am much indebted to Garth Dales for a pre-publication copy of his 
survey.) The seminal theorem is Gelfand's result that every character on a 
Banach algebra is continuous, and in fact has norm 1. The (very easy) proof 
of this does not, it should be noted, involve the Axiom of Choice or an 
equivalent axiom in any form: the axiom does come into play if we wish to 
assert that characters exist, or exist in abundance. In any event, it is natural 
then to look for other situations where every map of some algebraically 
defined class has good topological properties. An obvious question is the 
following: 

Is every character of a commutative locally m-convex / ^ 
Fréchet algebra continuous? 

This was already raised in [4] and no complete answer is as yet available. 
Recent work on other aspects of automatic continuity has directed attention 
to some facts that had not formerly been given much prominence, but are 
now in the forefront or current developments: perhaps they have relevance 
for (*) also. In the past, functional analysts have for the most part been 
talking prose (= ZFC) without being very explicit about it. Now however 
they have become aware of a spectrum of other linguistic possibilities, and 
many are seeking to relate their problems to other (perhaps unfamiliar) 
extensions of ZF. The attention given to Solovay's Axiom LM a few years 
ago has made for a heightened interest in this kind of activity. In particular, 
work on automatic continuity has been closely linked with the axioms of set 
theory being used. So instead of (*) we might rather have the reformulation 

Characterise the extension of ZF in which every character on 
a commutative locally ra-convex Fréchet algebra is 
continuous. 

Of course, even partial information would be welcome here, as elsewhere. (It 
should be remarked that if LM is assumed, then (*), and more, is true: see for 
example [2].) But it looks very much as though in the future analysts generally 
are going to have to think harder about the f ramework(s) in which they try to 
solve their problems. Is ZF + ?AC +?GCH really appropriate, or might NBG 
or a variant be better? Before long, who knows, we may all have to acquire at 
least a passing acquaintance with such currently exotic concepts as K-like 
trees, MA, 2^ sets, and 0. 
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Finite element Galerkin methods for differential equations, by Graeme 
Fairweather, Marcel Dekker, Lecture Notes in Pure and Applied Mathe­
matics, vol 34, New York, Basel, 1978, ix + 263 pp., $19.75. 

Elliptic boundary value problems come up often in applications. These 
problems are usually solved numerically, A simple approach is to replace 
each derivative with a difference quotient-this is called the method of finite 
differences. Thus the solution of the differential equation is approximated by 
approximating the differential equation. Another approach is to approximate 
the solution of the differential equation directly. The Finite Element Method 
does this as follows: Consider the differential equation to correspond with a 
variational principle. This variational principle is solved approximately. The 
approximation is that a finite family of functions replaces the infinite set of 
functions that satisfy the boundary conditions and are sufficiently smooth for 
integration by parts. The creative step is to determine this finite family 
suitably. For concreteness, consider the domain of definition for the differen­
tial equation to be a nice region in the plane, a polygon perhaps. The region is 
divided up into pieces. Over each piece, suitable approximating functions are 
defined. An example is dividing a polygonal region into triangles, followed by 
piecewise linear interpolation over the triangles. The term "finite elements" 
refers either to the triangles or to the linear functions. (Which it is, depends 
on the author.) Of course, piecewise linear interpolation cannot be carried 
out, because the values of the solution of the differential equation are not 
known inside the region. But these values are determined by a least squares 
approximation to the solution, in the inner product corresponding to the 
variational principle. The Finite Element Method is also called the Rayleigh-
Ritz-Galerkin Method, since these are particular cases of it. 

Perhaps an example helps: The differential equation is Poisson's equation 
- A n - / . (1) 

The approximation is of the form 

<x>y)**£AMx,y) (2) 

where the Bt(x9y) are the basis functions and the Aê eue numbers to be 
determined by the Finite Element Method, as follows: 

2 Afi(B„ Bj) = (ƒ, Bj), j - 1 , . . . , n, (3) 
tf—1 


