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Introduction. The notion of an additive category was abstracted from the 
example of all modules over a ring, a very large category. However with 
tongue firmly in cheek, one can define a ring with identity (all rings will have 
identity) as an additive category with just one object. Years ago, the notion of 
a Morita context was expounded with a certain amount of labour. A Morita 
context turned out to be an additive category with two objects. It is not 
inconceivable, then, that someday additive categories with three objects will 
emerge, the jump from three to infinity will be made, and additive categories 
will be rediscovered from the point of view of the small examples instead of 
the big ones. (Heaven knows what they will be called.) 

I wish to indicate how the observation that a ring R is an additive category 
with one object can be used for purposes other than to boggle the student of 
algebra. First, an i£-module, from this point of view, is just an additive 
functor from R to the category Ab of abelian groups, and an /Ê-module 
homomorphism is a natural transformation between two such functors. Thus, 
if G is a small additive category, or what we shall refer to more briefly as a 
ringoid, then a G-module is a covariant additive functor M: G —> Ab, and the 
category of all such is denoted Mod G. (Actually what we have defined is a 
left 6-modulc, a right C-modulc being an object of Mod G0**.) Now 
frequently, when such a category arises in the literature, it is pointed out that 
it is an abelian category, that it has exact direct limits, that it has a set of 
generators, that it has enough projectives and the injectives, and so on. What 
needs to be stressed is that there is virtually nothing which one can do in 
categories of modules over (not necessarily commutative) rings, which can't 
be done in categories of modules over ringoids. 

First, let us consider the building block of the category Mod R, namely R 
considered as a module over itself. In the more general situation, there is a 
whole family of building blocks, one for each object of C, namely the 
representablc modules (functors) G(p, ). The additive Yoneda lemma states 
that there is an isomorphism of abelian groups 

Home(G(p9)9M)~M(p) (1) 

which is natural not only as functors of the S-module Af, but also as functors 
of the variable p. What is being generalized here, of course, is the familiar 
natural isomorphism HomR(R, M) ^ M of left R-modules. The 
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isomorphism (1) yields immediately three facts about the modules G(p, ); 
they are projective, they are small (that is, homing with them commutes with 
coproducts), and as a family they generate. In fact, one can show that the 
existence of a family of objects with these three properties in an abelian 
category with coproducts actually characterizes categories of the form 
ModC. 

A notational convention is useful here. If M is a Q -module with x E M(p) 
and X E G(p, q\ then we denote the element M(K){x) of M(q) simply by \x. 
This is, of course, what one does in module theory over a ring, and one need 
only keep in mind that in the more general situation every element x E M 
comes with an object/? attached to it, and that scalar multiplication Xx makes 
sense only when the domain of À is p. With this convention in mind, one 
rarely has anything to change in generalizing definitions and facts concerning 
modules over rings to modules over ringoids. For example, a family of 
elements x, E M (/?,) is a family of generators for M if every element y E 
M(q) can be written as y = 2 \ * / for some \ E Q(pi9 q). The family is 
independent if 2\oc, = 0 =» \ = 0 for all i, and is a basis if it is an indepen­
dent family of generators. Equivalently, if 

0 S(pi9)UM 

is the morphism determined by the xê in view of (1), then {*,} is a family of 
generators if e is an epimorphism, independent if e is a monomorphism, and 
a basis if e is an isomorphism. A module is free if it has a basis, or 
equivalently, if it is isomorphic to a coproduct of representables. The notions 
of finitely generated and finitely presented then have their usual meanings. 

A left ideal of S is a submodule of a representable G(p, ), a right ideal is a 
submodule of G( ,/?) and a (two sided) ideal is a subfunctor of the two 
variable functor G( , ). If ƒ is a two sided ideal, then one can form the 
quotient ringoid G/1 in the obvious way. Then, just as in ordinary ring 
theory, once one has defined a property for modules, one says that the 
ringoid has that property if each of its representables G(p, ) has the property. 
For example, G is noetherian (artinian) if each G(p, ) has the ace (dec) on 
submodules. 

Granting that generalization from rings to ringoids is automatic, one might 
(and should) ask, why do it? Certainly there would not be much interest if all 
that is involved is a series of exercises in a basic course in ring theory. In 
order to justify generalization of this type, perhaps at least one of the 
following criteria should be satisfied. 

(1) Proofs of known theorems are simplified. 
(2) Two or more theorems are combined in one. 
(3) New examples are embraced by an old theory. 
(4) An open problem is solved. 
In what follows, I shall attempt to show that all of these conditions have 

been met. 

1. Projective dimension. Regarding an jR-module as an additive functor 
R -» Ab, one can consider generalizing the range as well as the domain, 
replacing Ab by a more general abelian category. For example, an additive 
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functor R -» Mod S is just an R, S-bimodule. Actually, most of our basic 
lemmas on projective dimension are valid in the context of abelian categories, 
and we shall state them in this generality. Proofs may be found in [24]. 

The projective dimension of an object A in an abelian category & is defined 
as 

pdA = sup{*|Ext*(i4, ) * 0}. 

Here we don't even require & to have enough projectives, since we can use 
Yoneda's definition of Ext in terms of exact sequences. Of course, if & has 
enough projectives, then pdA can be defined alternatively as the shortest 
length (or infinity) of a projective resolution of A. The global dimension of & 
(gl dim &) is the sup of the projective dimensions of its objects. The long 
exact Ext sequence induced by a short exact sequence 

0-+C-+B-+A-+0 
in & yields immediately: 

LEMMA 1.1. 

p d 5 = pdC=>pd^ < 1 + p d C , 
p d 5 < p d C = » p d ^ = l + p d C , 
pdB >pdC=>pdA = pd 5. 

If TJ: F -* G is a natural transformation between functors F, G: & -» ®, 
then we say that TJ is zpointwise contraction if for each object A E <$, there is 
a morphism \iA: G A -> FA such that nAt)A = identity. (We don't require /i to 
be natural.) 

LEMMA 1.2. Consider exact functors T: % -» & and S: & -> % between 
abelian categories. 

(a) If there is a pointwise coretraction TJ: 1# -» TS, then pd SA > pdA for 
all A E # . Hence gl dim % > gl dim &. 

(b) If S is left adjoint to T, then pd SA < pdA for all A E &. 

Both parts of Lemma 1.2 apply in the following situation. Consider a small 
category C and an object/? E C. Then we have the/?th evaluation functor Tp: 
0 e - » # , defined by Tp(D) = /)(/?). If <$ has coproducts, then the left 
adjoint of Tp is the functor Sp defined by 

Sp(A)(q)= 0 A. 

The adjunction morphism 

iU-A-*T,S,(A)= 0 ^ 

is just the coproduct injection corresponding to \p. Now if & is abelian with 
exact coproducts, then Sp is exact, and since Tp is exact in any case, Lemma 
1.2 yields: 

COROLLARY 13. If & is abelian with exact coproducts, then pd SpA = pd A 
for all A E & and p E C 

Part (a) of Lemma 1.2 applies, of course, if TS is the identity functor, that 
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is, if $ is a retract of S via exact functors. Now if C is a retract of D in Cat, 
then SF is a retract of OP via exact functors, and so we obtain: 

COROLLARY 1.4. Let C be a retract of D and let F:D-+Cbe a retraction. If 
& is an abelian category and D 6 SF, then pd DF > pd D. Consequently, 
gldim $° > gl dim 0 e . 

If 1 denotes the one morphism category, then 1 is a retract of any 
nonempty category D. Consequently: 

COROLLARY 1.5. gl dim <S!P > gl dim & for any nonempty, small category D 
and any abelian category $. 

Part (b) of Lemma 1.2 is an immediate consequence of the natural 
isomorphism 

Ext£(&4,5)« Extl(A, TB) 

which is valid whenever S is an exact left adjoint for an exact functor T. This 
isomorphism can also be used to prove the following lemma. 

LEMMA 1.6. If (£ is an abelian category with exact coproducts, then 

Ext"( © 4 , C) a X Ext"(^, C). 

#enc* pd © fvl; = sup{pd At}. 

So far we have no means for exhibiting abelian categories of arbitrarily 
large global dimension. The following lemma, which puts us in a situation 
similar to, but somewhat more complicated than that of Lemma 1.2, part (a), 
fulfills this purpose. 

LEMMA L7 (THE DIMENSION RAISING LEMMA). Consider exact functors TQ, TX\ 

% ~* & and S: & -* %, and suppose there is a pointwise coretraction i\: 
1#~* TXS and a natural transformation q>: T0-^Tt with ySA = 0 for all 
A G $ . Consider also an exact sequence 

0~»SA-^B~»B'~*0 

in %, and suppose there is a morphism r in & making the diagram 

ToB 

commutative. Then pd B' > 1 + pd A. 

The proof is much shorter than the statement. It may be illuminating to 
illustrate the lemma with the simplest situation to which it applies. Let 2 be 
the category 0~» 1, the totally ordered set of two elements. Then the functor 
category & is the category whose objects are the morphisms of 6E and whose 
morphisms are commutative squares. We have two evaluation functors 
TQ, r,: Ö? -* $, and x induces a natural transformation <p: T0-^TV If 
A € &f then we have the diagram in & 



SOME APPLICATIONS OF MODULE THEORY 871 

0 •(> >A »A >0 

I i .'.••'i' i i 
0 >A'—7->A •O * 0 

which may be considered as an exact sequence 

0 -» SXA -» B -> B' -> 0 

in # 2 . Note that TXSX is the identity, and that <pS{A = 0. Therefore if we take 
r = lA, then all the conditions of the dimension raising lemma are satisfied, 
and we conclude that pd B' > 1 + pd A . Consequently gl dim &2 > 1 + gl 
dim <$,. 

Another simple application of the dimension raising lemma shows that if N 
is the free monoid on one generator (so that (£N is the category of 
endomorphisms in &), then gl dim &N > 1 + gl dim $. Similarly, if Z 
denotes the free (multiplicative) group on one generator, then (£z is the 
category of automorphisms in $ , and one uses the dimension raising lemma 
again to see that gl dim &z > 1 + gl dim &. 

2. The generalized syzygy theorem. If G is a ringoid, then the global 
dimension of Mod G is denoted simply by gl dim (2. The Hubert syzygy 
theorem states that gl dimR[X] = 1 + gl dimR. However there are other 
theorems which say that if you do something to a ring, you raise global 
dimension by one. This happens, for example, if you pass to the ring of n X n 
triangular matrices over /?, n > 2, or the monoid (group) ring RG where G is 
a free monoid (group) on at least one generator. In this section we shall show 
how all these theorems can be combined in one. 

Let C be the free category generated by a directed graph. Thus the objects 
of C are the vertices of the graph, and the morphisms are the "paths" in the 
graph. The functor category (2e is the same as the category of diagrams in & 
over the graph. If D E 62e, it is not difficult to write down an exact sequence 
intfc 

O-»0Scoda2>(domtf).-> 0 Sp(D(p))-+D-+0 (1) 
a pec 

where a runs through the arrows of the graph, and dom and cod denote 
respectively domain and codomain (range). Actually the sequence is still valid 
if C, instead of being a free category, is some category of fractions of such. 
This remark is necessary if we want to include the example of the free group 
mentioned above. Now if & has exact coproducts, then by Corollary 1,3 and 
Lemma 1.6, the left and middle terms in the sequence (1) have projective 
dimension < sup, pd D(p). Therefore by Lemma 1.1 we obtain 

pdD < 1 + sup pd/)(/?). (2) 
p 

Consequently 

gldim(£c < 1 + g ld imS. (3) 

Now let us suppose that the morphisms (paths) in the free category which 
are inverted so as to obtain C are all of length one (that is, arrows of the 
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original graph). Such a category C is called a bridge category. It is not 
difficult to see that if C is a bridge category which is not equivalent to a 
discrete category, then C contains at least one of 2, N, or Z as a retract in 
Cat. But the dimension raising lemma gave us gl dim (3? > 1 + gl dim & in 
each of these three cases. Therefore the same holds for a general bridge 
category by Corollary 1.4. Combining with (3), this yields: 

THEOREM 2.1 (GENERALIZED SYZYGY THEOREM). Let & be an abelian 
category with exact coproducts, and let C be a bridge category which is not 
equivalent to a discrete category. Then 

gl dim SF * 1 + gl dim &. 

REMARK. If D is a category of fractions of a free category and C is a 
category presented as a quotient of D modulo some congruence relation, then 
one can form the sequence (1) except that in place of the 0 on the left end 
there is a coproduct indexed by relations generating the congruence relation, 
and one can add a subsequent term indexed by the "relations among 
relations." This sequence is a generalization of one given by Lyndon [22] 
relative to group cohomology, and can be found in [24, p. 104]. 

We shall now show how one derives statements about rings from a theorem 
such as the above. If C is a small category and R is a ring, we can form the 
ringoid RC whose objects are those of C, where RC(p9q) is the free 
/̂ -module on the set C(p, q). Composition is defined by 

(2^) ( | r a a)=2( 2 ^«)Y. 

If C is a monoid (category with just one object), then RC is, of course, the 
usual monoid ring with coefficients in R. Now it is easy to write down an 
isomorphism of categories 

Modi?C~ (Mod/?)c. 

The classical syzygy theorem now follows since RN is just the polynomial 
ring R [X], more generally taking G to be a free monoid on at least one genera­
tor, we get the theorem of Hochschild [13]: gl dim RG * 1 + gl dim R. 
Similarly, since a free group is just a free monoid with all generators inverted, 
we obtain the same result for the free group ring. 

To see how to get the theorem on triangular matrix rings, define first two 
ringoids S and D̂ to be Morita equivalent if their module categories are 
equivalent. If (2 is a ringoid whose set |C| of objects is finite, we can form the 
ring [S] of \Q\ X \Q\ matrices of the form [a^] where a^ E G(q,p). Using 
the fact that (BpG(p, ) is a small projective generator for Mod S, one sees 
that 6 and [C] are Morita equivalent. In particular if C is a finite poset, then 
considering C as a category, [RC] is just the ring of |C| X |C| matrices of the 
form [rpq] with r E R and rM = 0 if p £ q. Taking C to be the totally 
ordered set with n elements (which is a free category), we see that [RC] is the 
ring of n X n triangular matrices. 

3. Maschke's theorem. We consider briefly another classical theorem which 
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turns out to be a theorem about abelian categories. If $ is an additive 
category, then the center of &, denoted C((£), is the ring of endomorphisms 
of the identity functor on &. If G is a ringoid, then C(Mod Q) ~ C(Q). The 
center of a ring is, needless to say, isomorphic to the subring of all elements 
which commute with every element. 

THEOREM 3.1. Let & be an abelian category, and let G be a finite group. If 
the order of G is invertible in C{&), then 

gl dim @F = gl dim &. 

Otherwise gl dim <3F = oo. 

COROLLARY 3.2 (MASCHKE). If G is a finite group and K is a field whose 
characteristic does not divide the order of G, then KG is semisimple. 

The theorem is proved in [23]. The statement about infinite global 
dimension is another application of the dimension raising lemma. 

4. Partially ordered sets. Let C be a poset and let L be a subcategory. If 
there is a retraction F: C -> L, then it is obvious that L must be full. On the 
other hand suppose that L is a full subcategory, and suppose further that L is 
a complete lattice. Then we can define F: C -» L by letting F(p) be the inf of 
all members of L greater than or equal top. The map F is order preserving, 
and by fullness restricts to the identity on L. In this case by Corollary 1.4 we 
obtain 

gl dim (2e > gl dim &L 

for any abelian category ($,. Now we have seen that 

gl dim &2 ~ 1 + gl dim &, 

and by induction we obtain 

gldimffir = n + gldim#. 

Since 2n is a complete lattice, we then see that 

gl dim <SF > n + gl dim & 

for any poset containing 2" as a full subset. 
A poset C is discrete if p < q =*p * q. In this case @F is just a product of 

copies of S. On the other hand if C is not discrete, then C contains 2 as a 
(necessarily full) subset. This gives: 

PROPOSITION 4.1. If Cis a discrete poset and & is any abelian category, then 

gl dim (2e = gl dim &. 

On the other hand if C is not discrete, then 

gl dim # c > 1 + gl dim &. 

Ifp < q in a poset, then the full subset {v\p < v < q) is called a muscle in 
C. Clearly C contains 2 X 2 as a full subset if and only if some muscle is not 
totally ordered. In this case we shall say that C contains a square. The Krull 
dimension of a poset is the sup of the lengths of its chains. A poset C is free as 
a category if and only if all of its muscles are finite chains, or equivalently, if 
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and only if its muscles have finite Krull dimension and C does not contain a 
square. Combining this with the generalized syzygy theorem, we obtain: 

THEOREM 4.2. IfC is aposet whose muscles have finite Krull dimension and if 
C does not contain a square, then 

gl dim (SF < 1 + gl dim & 

for all abelian categories & with exact coproducts. On the other hand if C is any 
poset containing a square, then 

gl dim (F- > 2 + gl dim & 

for all abelian categories &. 

REMARK. If C is a well ordered set and K is a field, then every left ideal in 
KC is representable. Thus KC is hereditary and so gl dim KC < 1. On the 
other hand if C has ordinal type at least <o„ + 1 where <on denotes the first 
ordinal of cardinal number Hn, then using Theorem 5.8 of the following 
section one can show gl dim KC09 > n + 2. But of course no totally ordered 
set contains a square, and so the assumption on finite Krull dimension cannot 
be dropped in the first statement of the theorem. 

Let us consider the following poset, which we shall denote by Cn {n > 2): 

0) 

Using the dimension raising lemma, it is not difficult to show that 

gl dim (F* = 3 + gl dim & 

for all abelian categories éB. (For n = 3 this follows since C3 = 2 X 2 X 2.) 
But C„ is a finite lattice for n > 3, and consequently 

gl dim (2e > 3 + gl dim & 

for any poset C containing C„ as a full subset, n > 3. However C2 is not a 
lattice, and the fact that C contains it as a full subset does not guarantee that 
it contains it as a retract. In fact, if C2 is a full subset of C, then it is a retract 
if and only if there is no element of C following both 1' and 2' and preceding 
both 1 and 2 (diagram (1)). We shall say that C contains a crown if it contains 
C„ as a full subset for some n > 2. with the above additional condition in 
case n = 2. 

THEOREM 4.3. IfC is aposet whose muscles have finite Krull dimension and if 
C does not contain a crown, then 

gl dim (F < 2 4- gl dim & 

for all abelian categories & with exact coproducts. On the other hand if C is any 
poset containing a crown, then 
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gl dim @F > 3 + gl dim $ 
for all abelian categories &. 

The second statement was essentially proved above. The first statement is 
more difficult, and is best proved using Theorem 5.6 concerning posets of 
cohomological dimension one. (See [7, Theorem 15].) 

Finally, we remark that there are examples of finite posets C such that gl 
dim RC * 3 + gl dim R for some rings /?, and gl dim RC = 4 + gl dim R 
for others. Thus there is no sequel to Theorem 4.3. 

5. Cohomological dimension. If C is a small category, then the unique 
functor C -» 1 induces a functor A: & -+ GF whose right adjoint is denoted 
limc: 62e -> & (lim when there is no danger of confusion), and whose left 
adjoint is denoted coliniç. In particular if R is a ring and & is Mod R, then 
relative to an object M E Mod RC we have 

lim M « HomR(R, lim M) » HomRC(AR, M). 

Consequently, if lim*: Mod i?C->Mod R denotes the fcth right derived 
functor of lim, then we see 

lim*M = Ext*c(Atf, M). 

This means that if we define the R-cohomological dimension of the small 
category C by 

cdAC = sup{A:|limA:7é0}, 

then cdflC is the same as pd A/?, the projective dimension of the constant 
7?-valued functor considered as an R C-module. When R = Z, the ring of 
integers, we simply write cd C. 

Several observations are immediate. 
(1) If {C/} are the connected components of C, then Mod RC is 

isomorphic to the product of the Mod RCi9 and under the isomorphism AR 
goes to the tuple of A/?'s. This yields 

cdAC = sup cdAC,. 
i 

(2) If C -> D is any functor between small categories, then AR goes to hR 
under the induced functor Mod i?C«-Mod RD. From Corollary 1.4 it 
follows that if C is a retract of D, then cd^C < cdAD. 

(3) If C is the idempotent completion of C, then the inclusion C-»C 
induces an equivalence Mod RC a Mod RC. Since AR goes to A/?, we see 
that cd^C = cdAC. 

(4) If there exists a ring homomorphism /? -> S, then a projective resolution 
for AR can be tensored with S over R to obtain a projective resolution for 
AS. It follows that cd5C < cd^C. In particular we find cdAC < cdC for all 
rings R. One can show further that if R -> S is a coretraction as ü-bimodules, 
then cd5C * cd^C. This will be the case whenever S is a nonzero i?-algebra 
and R is a field. 

If C has an initial object /?, then Ai? is just the representable functor 
RC(p, ), and consequently cdAC * 0. Conversely, we have the following 
theorem of Laudal [20]. (See also [6].) 
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THEOREM 5.1 (LAUDAL). If C is a connected category in which idempotents 
split, then cd C = 0 if and only if C has an initial object. 

The assumption on C is really no restriction, of course, in view of obser­
vations (1) and (3) above. Further, if C is a poset, then the theorem is valid 
for any coefficient ring R. The following lemma shows, however, that 
arbitrary coefficients cannot be used in general. 

LEMMA 5.2. If G is a group and R is a nonzero ring, then cdRG = 0 if and 
only if G is finite and its order is invertitle in R. If G is finite and its order is 
not invertible in R, then cdRG = oo. 

Now let us consider the cohomological dimension one. Taking D = àR in 
the inequality (2) of §2, we obtain: 

PROPOSITION 5.3. If C is a category of fractions of a free category, then 
cd^C < 1 for any ring R. 

When C is a torsion free group, the converse of Proposition 5.3 is true, and 
this is the well-known and difficult theorem of Stallings [28] and Swan [29]. 

THEOREM 5.4 (STALLINGS, SWAN). If G is a torsion free group and R is any 
nonzero ring, then cdRG < 1 if and only if G is free as a group. 

Shapiro's lemma asserts that if H < G is a subgroup, then cdRH < cdRG. 
This is another consequence of Lemma 1.2 (b), since it is easy to see that the 
restriction functor Mod RG -+ Mod RH has an exact right adjoint. This 
yields: 

COROLLARY 5.5. If G is any group, then cd G < 1 if and only if G is a free 
group. 

Let C'„ denote the poset Cn without its initial element (diagram (1) of §4). 

THEOREM 5.6 (CHENG, MITCHELL [7]). Let C be a poset with dec and let R be 
any nonzero ring. Then cd^C < 1 if and only if C does not contain C'n as a 
retract for any n > 2. 

A simple algorithm was given by Cheng [8] for determining when a finite 
poset has cohomological dimension one. First, if p < q in a finite poset, and 
if for no v do we have p < v < q, then q is called a cover for p and p is a 
cocover for q. An element is superfluous if it has precisely one cocover, or if it 
is minimal and has precisely one cover. The removal of a superfluous element 
from a poset may, in the resulting full subset, create new superfluous elements 
and destroy old ones. We let EC denote any full subset obtained by iterating 
as many times as possible the operation of removing a superfluous element. 
One can show that up to isomorphism, EC is independent of the way in 
which superfluous elements are removed. If C is any poset, we let Cq be the 
full subset {p\p < q). 

THEOREM 5.7 (CHENG). Let C be a poset such that Cq is finite for each q.IfR 
is any nonzero ring, then cd^C < 1 if and only if ECq = 1 for all q. 

For posets which do not have the dec we have no conjecture. The 
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independence of the ring in Theorem 5.6 breaks down in higher dimensions, 
for there exists finite posets C such that cd^C = 2 for some rings R and 3 for 
others. In fact, one can make the difference cd^C - cdsC as large as one 
likes by suitably choosing the finite poset C and the rings R and S. However, 
for directed sets, the complete story can be told. 

THEOREM 5.8 [26]. If C°p is a directed set and R is any nonzero ring, then 

cd^C = n + 1 

where #n is the smallest cardinal number of a zofinal subset of C°p. 

Here we make the conventions that n + 1 is to be replaced by oo if n is an 
infinite ordinal, and N_, = 1. Thus in the latter case, Theorem 5.8 follows 
from Theorem 5.1. Notice that Theorem 5.8 serves to show that Theorem 5.6 
is not valid without the dec. 

A word on the proof of Theorem 5.8 is perhaps in order. In [27], Osofsky 
defined the notion of a directed module, and obtained a complete result on 
the projective dimension of a totally ordered module. Now in keeping with 
the point of view that most theorems about modules over rings are really 
theorems about modules over ringoids, Osofsky's theorem is valid for 
ringoids. With this generality at hand, AR becomes an example of a directed 
module over RC when C°p is a directed set. This yields easily the totally 
ordered case of Theorem 5.7. The general case is obtained from the totally 
ordered case by a trick. 

6. Homological dimension. The tensor product of a G -module M with a 
(2°p-module N is the abelian group defined as 

N ® Af-f © N(p) ® M(p)]/K 
G LP Z J 

where K is the subgroup of the numerator generated by elements of the form 
nX® m - n ®Xm with m G M(p), n G N(q), and X G G(p9 q). The usual 
tensor-hom adjointness is readily established. It is also easy to exhibit an 
isomorphism 

N ® e(p,)~N(p) 
G 

which is natural in both N and/?. This is the obvious extension of the familiar 
isomorphism N ® R R ^ N of right R-modules. The usual notions of flatness 
and purity make sense in this generality, and the standard tools relating to 
them are available. For example, D. Lazard's theorem [21] characterizing flat 
modules as direct limits of projective modules is valid, and so the notion of 
flatness is a Morita invariant. Likewise for purity. 

Now consider the left adjoint colim: Mod RC -> Mod R of the functor A: 
Mod R -» Mod RC. Using tensor-hom adjointness, colim is easily seen to be 
given by 

colim M = AR ® Af. 
RC 

Thus if colim* denotes the fcth left derived functor of colim, then we see 

colim^M = Tor£c(A/î, M). 
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This means that if we define the R-homological dimension of the small 
category C by 

hdRC = sup{/:|colim^ =£ 0}, 

then hd*C is the same as wd AR, the weak (or flat) dimension of the constant 
/{-valued functor considered as an (iîQ^-module. Again for R = Z, we write 
hd C. The observations made on cohomological dimension at the beginning 
of the previous section are also valid for homological dimension. 

A category C is filtered if: 
(1) For every pair of objects/?, q, there is an object r such that C(p, r) and 

C(<7, r) are nonempty. 
(2) For every pair of morphisms a, fi E C(p, q\ there is a morphism y such 

that ya = yfi. 
When C is a posct, (2) is redundant, and (1) just says that C is directed. In 

this case we know, of course, that the colimit functor (usually called the direct 
limit functor) is exact, and it is easy to see that this is true more generally for 
filtered categories. Consequently it is true for categories all of whose 
components are filtered, and so for such categories we have hd^C = 0. A 
conjecture which stood for some time was that when R = Z the converse is 
true. Before giving the counter-example, we shall state the correct theorem. If 
C is a small category, then aff C denotes the subcategory (nonadditive) of ZC 
consisting of those morphisms whose integer coefficients sum to 1. 

THEOREM 6.1. hd C = 0 if and only if aff C has filtered components. 

This theorem appeared in Isbell and Mitchell [15] and is essentially a 
reworking of an earlier theorem of Isbell. It is proved by observing that 
hd C = 0 means AZ is flat as a ZC°p-module, so that consequently the 
monomorphism is pure in a short resolution for AZ. One then invokes a 
well-known criterion for purity in terms of generators and relations. Note that 
the theorem says that the above conjecture is true if C is a poset, since in this 
case aff C = C. Also, using the theorem one can show that the conjecture is 
true if C has a weak terminal object [15]. Such considerations lead the second 
author above to conjecture that the category Afacc of all finite ordinals and 
order preserving injections is a counterexample to the original conjecture. It is 
clearly not filtered since all of its morphisms are monomorphisms. An 
ingenious argument of Isbell [14] showed that, in fact, aff Afacc is filtered. 

Besides the above theorem, not too much seems to be known about 
homological dimension. In particular, I don't believe there are any theorems 
on homological dimension one. Locally free groups are easily seen to have 
homological dimension one, and one could conjecture that the converse is 
true. However I don't know if the problem has been looked at. There is, 
nevertheless, a theorem relating homological dimension to cohomological 
dimension. 

THEOREM 6.2 (LATCH, MITCHELL [19]). If the cardinal number of the set of 
morphisms ofC is Hn, then 

hdAC < cd^opC* < n + 1 + hdAC. 
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The first inequality follows from the fact that the weak dimension of any 
module is at most its projective dimension. Theorem 5.8 shows that the 
second inequality cannot be improved. The theorem had been proved by 
Latch in [18] with a rather restrictive assumption on C. However the result 
turned out to yield more readily to a theorem in module theory on the 
projective dimension of an &n-related flat module. 

7. Hochschild dimension. If ff is an abelian category with exact products 
and C is a small category, then the evaluation functors (2e -» ff all have exact 
right adjoints, and consequently by Lemma 1.2 we know 

sup pdD(p) <pdD (1) 
p 

for any D E (2e. The question then arises as to how much the right side of (1) 
can exceed the left side. This gives rise to the notion of Hochschild 
dimension, which we shall now discuss. 

If A is a commutative ring, then a K-category is a category ff equipped 
with a A-module structure on each of its horn sets &(A,A') such that 
composition is A'-bilinear. It is equivalent to be given an additive category ff 
together with a ring homomorphism K-* C(ff). A one object ^-category is 
just an associative A-algebra, and so we shall call a small /f-category a 
K-algebroid. If S is a A'-algebroid, then Mod 6 is a A-category in the obvious 
way. If ff and % are A'-categories, then a functor F: ff -* © is a K-functor if 
&(A, A') -» % {FA, FA') is a A-module homomorphism for all A, A'. If ff is a 
AT-category and <S is a /f-algebroid, then &e denotes the category of all 
A-functors G -> ff. The category Mod G can be identified with the category 
(Mod A)e. The tensor product G ®K tf) of A-algebroids can be formed in 
the obvious way so as to yield an isomorphism 

In particular we have Mod G ®K fy * (Mod G)®. 
If S is a if-algebroid, then the two variable horn functor Q{ , ) can be 

considered as a Q?9 ®K (5-module. As such, its projective dimension is called 
the Hochschild dimension of the A'-algebroid S, and is denoted dim^G. Notice 
that &v ®K G is isomorphic to its own opposite, from which it follows that 
dim^C = dimjcG09. If G and tf) are Jf-algebroids, then they are Morita 
equivalent if Mod G and Mod <3) are equivalent via a A'-functor. It is not 
hard to see in this case that dim^S = d i m ^ . A A-algebroid G is K-projec-
tive if G(p, q) is a projective A-module for all/?, q. 

THEOREM 1 A. Let G be a K-projective algebroid, and let & be an abelian 
K-category with exact coproducts. Then 

pd D < dim^S + sup pd D (p) 
p 

for all D E ff5. 

The proof is in [24, p. 60]. To see that dim^C cannot be replaced by 
anything smaller in the inequality, let ff = Mod &*, and let D = C( , ). Then 
the values of D are the representable modules 6(,/?), which are projective, 
and consequently the inequality in this case is an equality. 
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If C is a small category, then AC is a A-algebroid. We define the 
K-Hochschild dimension of C to be dim^AC, which we denote more simply 
by dim^C (dim C when A = Z). The four observations on cohomological 
dimension at the beginning of §5 are also valid for Hochschild dimension. In 
particular, dim^C < dim C for all commutative rings K. If & is a A-category, 
then &KC « â5\ Since KC is A'-projective (in fact, A'-free), Theorem 7.1 
becomes: 

COROLLARY 7.2. If & is an abelian K-category with exact coproducts, then 

pd D < dim^C + sup pd D (p) 
p 

for all D E (F. 

In particular, taking D = A A E Mod AC, we get: 

COROLLARY 7.3. cd^C < dim^C. 
For groups this inequality is an equality [5, p. 195]. However we know that 

this can't be true in general since cd^C ^ cd^C0*5. 
Suppose dim C « 0. Then by Corollary 7.3 we have cd C = 0, so if we 

assume C is connected and idempotents split, then by Theorem 5.1 we know 
C has an initial object/?. But dim C = dim C0*5, so C has a terminal object q. 
If C(p, q) were empty, then C would contain 2 as a retract. But from 
Corollary 7.2 and the example following the dimension raising lemma we 
know d i m 2 > l . Hence dim C > 1, a contradiction. Thus C(q,p) is 
nonempty, and so C has a zero object. Therefore if we assume that C is 
idempotent free (more precisely, the only idempotents are identities), we 
obtain: 

PROPOSITION 7.4. If C is idempotent free, then dim C = 0 if and only if C is 
equivalent to a discrete category. 

I don't know what happens when C has nonidentity idempotents. One 
could conjecture that dim C = 0 if and only if ZC is Morita equivalent to ZD 
for some discrete category D. 

Let us turn to Hochschild dimension one. By the inequality (2) of §2, we 
have dim C < 1 whenever C is a category of fractions of a free category. I 
expect that if C is idempotent free, then the converse holds. This is true when 
C is a group by the Stallings-Swan theorem. Another instance where it is true 
is given by the following theorem. 

THEOREM 7.5. If C is a small category in which the only endomorphisms are 
identities, then dim C < 1 if and only if Cis free. 

This was proved for posets in [24]. The more general theorem will appear in 
Cheng [9]. 

The idempotent free categories of fractions of free categories are precisely 
the bridge categories of the generalized syzygy theorem. These categories 
have the following strong property, which allows us to give examples of 
categories of arbitrary Hochschild dimension. 

THEOREM 7.6 [24, p. 119]. Let C be a bridge category which is not equivalent 
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to a discrete category. Then for any K-algebroid G we have 

AimKG <g> KC = 1 + dimKG. 
Is. 

As for categories C of Hochschild dimension < 2, a large class of them was 
described in terms of generators and relations for C in [24, p. 110]. For a 
certain class of categories the description turned out to be necessary as well 
as sufficient [24, p. 125]. This used the extended exact sequence (1) of §2 
referred to in the remark of that section. 

The following is a slight improvement on [24, Corollary 37.6]. 

THEOREM 7.7. If C is a totally ordered set whose closed intervals all have 
cardinal number at most Hn, then 

dim C < n + 2. 
It should be possible to determine the precise Hochschild dimension of any 

totally ordered set. Note that the ordered set of integers has dimension one 
since it is free. The rationals have dimension < 2 by Theorem 7.7 and > 2 by 
Theorem 7.5. The dimension of the ordered set of real numbers probably 
depends on the continuum hypothesis. 

8. Free ideal ringoids. A ringoid G has invariant basis number (ibn) if any 
two bases for a (2-module have the same number of elements. This can 
obviously be formulated in terms of the nonexistence of a pair of nonsquare 
matrices whose product in either order is defined and is the identity. It 
follows by passing to transposes that if G has ibn, then so does C°p. It also 
follows that if there exists a map (additive functor) G •-> fy of ringoids and if 
^ has ibn, then so does G. In particular, if R is a ring with ibn and C is any 
small category, then RC has ibn, for we always have the map RC -» R which 
sums coefficients. Note that if G has ibn, then it can have no zero object, for 
otherwise a free module on one generator would be isomorphic to the free 
module on no generators. Likewise G can have no product of the form 
C ® C' since otherwise a free module on one generator would be isomorphic 
to a free module on two generators. 

If G has ibn and if every left ideal is free, then G is called a free left ideal 
ringoid, or more briefly, a left firoid, G is a right firoid if G°p is a left firoid, 
and is a two sided firoid if it is both left and right. Using the ibn, it is easy to 
see that a left firoid is a domain (that is, fla = 0 =» a * 0 or /? = 0). In 
particular if RC is a left firoid, then R is a domain and C is cancellative. 
Another easy consequence of the ibn is that if two principal left ideals in a 
left firoid have nonzero intersection, then their sum is principal. When there 
is just one object we say fir instead of firoid. The remark of §4 gives examples 
of left firoids which are not right firoids. 

A complete description of two sided firoids of the form RC has been given 
by Roman Wong [30]. 

THEOREM 8.1 (WONG). RC is a two sided firoid if and only if C is a bridge 
category and R is a division ring, or C is equivalent to a discrete category and R 
is a fir. 

COROLLARY 8.2. If Cis a nontrivial monoid, then RC is a two sided fir if and 
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only if R is a division ring and C is the free product of a free monoid and a free 
group. 

The "if direction of the corollary is a theorem of P. M. Cohn [10] who 
obtained it as a consequence of a general result on free products of firs. 
However Wong gave a direct proof. For the "only if' he used another result 
of Cohn, suitably generalized to categories, characterizing those monoids 
which are free products of a free monoid and some group. One then invokes 
the Stallings and Swan theorem to show that the group must actually be free. 
Now if C is not equivalent to a discrete category, then once one has shown 
that it is a bridge category, one knows by the generalized syzygy theorem that 
gl dim RC = 1 + gl dim R. But a left firoid is hereditary, and so gl dim RC 
= 1. Hence gl dim R = 0, that is, R is semisimple, and so being a domain, it 
must be a division ring. 

9. Projective free ringoids. A ringoid is projective free if every projective 
6 -module is free. The theorem of Quillen-Suslin says that if C is a finitely 
generated free commutative monoid and R is a pid, then RC is projective 
free. Examples in [2] show that R cannot be replaced by a general projective 
free ring. 

Any left firoid is projective free. For a left firoid is hereditary, and 
consequently every projective module is a coproduct of left ideals [5, p. 13]. In 
particular, by Theorem 8.1 we know that if AT is a field and C is a bridge 
category, then KC is projective free. It would be interesting to know if K can 
be replaced by a pid. Of course we know that K can't be replaced by any 
projective free ring because of the example of the polynomial ring. In [3], 
Bass showed that if C is a free monoid or free group and R is a pid, then 
finitely generated projective modules over RC are free. 

A ringoid G is local if every representable 6(p9 ) has a unique maximal left 
ideal. As in the case of rings, 6 is local if and only if (?p is local. The proof 
of Kaplansky [17] for rings generalizes to give the following theorem. 

THEOREM 9A. A local ringoid is projective free. 

If K is a division ring and C is a poset, then it is obvious that KC is local. 
Thus: 

COROLLARY 9.2. If Kis a division ring and C is a poset, then KC is projective 
free. 

If C is assumed to have the dec, then the division ring K of the corollary 
can be replaced by any projective free ring: 

THEOREM 9.3 [7]. If R is a projective f ree ring and C is a poset with dec, then 
R C is projective free. 

Except for Corollary 9.2, we have no idea what happens to Theorem 9.3 
when the dec is removed. For example, if C is the poset of negative integers, 
is ZC projective free? Of course this example may be special, since here C is 
free as a category. In any case, a single example of a non dec poset C and a 
projective free, nondivision ring R such that RC either is or is not projective 
free would be illuminating. 
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10. Perfect ringoids. The Jacobson radical of a ringoid G can be defined as 
the two sided ideal / such that /(/?, ) is the intersection of the maximal left 
ideals in G(p, ), or equivalently, such that / ( , q) is the intersection of the 
maximal right ideals in C ( , q). The usual module theoretic facts relating to 
the Jacobson radical, including Nakayama's lemma, are valid. In particular, 
G is semisimple if and only if it is artinian and 7 = 0. 

An ideal ƒ of S is T-nilpotent if for every sequence ax$ a29. *. of compos-
able elements of / we have a,a2 • • • a„ — 0 for some n. A ringoid is perfect 
if every module has a projective cover (defined dually to injective hull). One 
can then repeat Bass' proof [1] of the following theorem. 

THEOREM 10.1 (BASS). The following conditions are equivalent on a ringoid G* 
(a) G is perfect. 
(b) Every flat G>-module is projective, 
(c) G has the dec on principal right ideals. 
(d) G(p,p) contains no infinite set of orthogonal idempotents for eachp9 and 

every nonzero Q39-module contains a simple submodule. 
(e) G/J is semisimple and J is T-nilpotent. 

If C is a poset and AT is a division ring, then the Jacobson radical of KC is 
easily seen to be given by J(p9 q) = K if p < q and 0 otherwise. Thus KC/J 
is a disjoint union of division rings, and so is semisimple. Moreover we see 
that J is T-nilpotent if and only if C has the dec. By virtue of condition (e) of 
the theorem, this provides examples of perfect ringoids whose opposites are 
not perfect. 

Bass asked if the dec on principal right ideals implies the dec on finitely 
generated right ideals. This question was answered with a vengeance by Björk 
[4], who showed that in any module the dec on cyclic submodules implies the 
dec on finitely generated submodules. However I would like to show why it 
is, granting that Bass' theorem applies to ringoids, that Bass had essentially 
answered his own question. First observe that finitely generated means cyclic 
in a ringoid with finite products. Now any ringoid G is contained as a full 
subcategory in a ringoid G with finite products in such a way^that every 
object of G is a finite product of objects of G. (One just takes G to be the 
ringoid whose morphisms are finite matrices of morphisms of G.) The latter 
property guarantees that the restriction functor Mod G -» Mod G is an 
equivalence of categories. Since perfection is a Morita invariant, it follows 
that G is perfect if and only if G is. But Mod Q* ~> Mod Q* is also an 
equivalence of categories, and any representable in Mod G?9 comes from one 
in Mod è°p. Thus a descending chain of finitely generated right ideals in G 
gives rise to a descending chain of principal right ideals in G9 which must 
terminate if 6, hence G, is perfect. 

11. The universal counterexample. Most counterexamples in this paper, in 
particular all examples showing that a notion is not left-right symmetric, are 
given by the ringoid KC where K is a field and C is an appropriate ordinal 
number considered as an ordered set, hence as a category. Of course similar 
examples exist in rings, but there one usually has to be more clever. For 
example, there are left principal ideal domains with arbitrarily large right 
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global dimension (Jategaonkar [16]). In particular, these provide examples of 
left firs which arc not right firs. (See also Cohn [11].) Also there arc examples 
of Bass [1] exhibiting perfect rings whose opposites are not perfect. 

We shall conclude with one additional use of the above example KC. First, 
if C is a totally ordered set and A' is a field, then it is easy to see that KC is 
noetherian if and only if C does not contain (<o + Xf9 as a subcategory, and 
KC is artinian if and only if C does not contain to as a subcategory. This 
provides examples of ringoids which are left but not right noetherian 
(artinian). But more important, it also provides examples of ringoids which 
are left artinian but not left noetherian. This, then, serves as a word of 
caution concerning our principal theme, namely, that theorems about rings 
are really theorems about ringoids. 
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