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to applications to analysis without first computing even one real probability 
distribution, be it for a passage time, a hitting probability, an occupation 
time, or some more involved functional. Secondly, the overall tone of the 
work is already set in the preface as follows: "The great day of the dedicated 
solitary researcher is over, if indeed it ever existed.... In their stead, concern 
for the human consequences of scientific and technological achievement must 
become part of our working lives,.. . Only through organized collective 
action can this be achieved." This being so, it is easy to imagine why the 
methods and ideas of a generation of researchers should be presented here in 
a condensed and transparently clear form, with no suggestion of the effort 
that must have gone into developing them. Professor Lamperti has indeed 
done a highly praiseworthy job in providing us with a careful and painless 
review of stochastic processes. For some readers, however, the work may be a 
trifle unoriginal. A few more novel calculations, descriptive generalities, or 
even loose ends, might have alleviated the collective mentality and given the 
reader more to remember. 
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Vector measuresy by J. Diestel and J. J. Uhl, Jr., Math. Surveys, no. 15, Amer. 
Math. Soc, Providence, R.I., 1977, xiii + 322 pp., $35.60. 

I am an avid reader of the mystery novels of John Dickson Carr and the 
Poirot stories of Agatha Christie. I was led to these authors by a keen earlier 
interest in the works of Edgar Allen Poe and the Sherlock Holmes Stories of 
Sir Arthur Conan Doyle. Thus, in good faith, I cannot say that this book 
under review is the most entertaining book I've read; however, I can say that 
it is the most entertaining mathematics book I've ever read (including a 
famous measure theory book much enjoyed in my wasted youth). Indeed this 
serious, but sometimes irreverent, romp through vector measures can be 
enjoyed even by those misguided souls with a strong dislike for vector valued 
integration and the geometry of Banach spaces. 

I will go so far as to say that the introduction alone is worth the 
(exorbitant?) price of the book: " . . . shortly after 1936, Dunford was able to 
recognize the Dunford-Morse theorem and the Clarkson theorem as genuine 
Radon-Nikodym theorems for the Bochner integral. This was the first 
Radon-Nikodym theorem for vector measures on abstract measure spaces." 

"B. J. Pettis, in 1938, made his contribution to the Orlicz-Pettis theorem for 
the purpose of proving that weakly countably additive vector measures are 
norm countably additive." 

" . . . Dunford and Pettis, in 1940, built on their earlier work to represent 
weakly compact operators on Lx and the general operator from Lx to a 
separable dual space by means of a Bochner integral. By means of their 
integral representation they were able to prove that Lx has the property now 
known as the Dunford-Pettis property." 

"Then came the war! By the end of the war, the love affair between vector 
measure theory and Banach space theory had cooled. They began to drift 
down separate paths. Neither prospered. Much of Banach space theory 
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became lost in the mazes of the theory of locally convex spaces. The work in 
vector measure theory became little more than formal generalizations of the 
scalar theory. Representation theory for operators on function spaces became 
the vogue. But all too often these representation theories gave no new 
information about the operators they represented. During the fifties and early 
sixties the theory of vector measures languished in sterility. . . . " 

How sad! How true! 
Although the tone is set by the introduction, the mood of the book is set by 
the opening sentence of the first chapter: "Grubby set-theoretic mani­
pulations cannot be avoided in measure theory and most of them are found 
in this chapter." Along the way they think nothing of poking good natured 
fun at themselves: "Wallowing in a state of ignorance, Uhl rediscovered a 
theorem [of Rickart]" (p. 39) and the origin of some of their examples: 
"custom made in 1973 by J. Hagler at Murphy's pub, Champaign, Illinois" (p. 
57). 

Although this book was written to entertain, its content and purpose are 
quite serious. The authors have endeavored to present a comprehensive 
survey of the theory of vector measures and, in the process, present the 
interplay between properties of Banach spaces and measures taking values in 
Banach spaces. The connecting device is a technical lemma of Rosenthal. 

LEMMA (p. 18). Let ^ be a field of subsets of the set Q and let (p») be a 
uniformly bounded sequence of finitely additive scalar-valued measures defined 
on §\ Then, if (En) is a disjoint sequence of members of £F and e > 0, there is a 
subsequence (E ) of(En) such that 

I ft,l U EnK 
ATGA 

<e 

for all finite subsets A of the positive integers and allj =•= 1, 2 , . . . . 

This measure-theoretic result allows one to prove such results as the 
Orlicz-Pettis theorem (in any Banach space, weak subseries convergence 
implies unconditional convergence in norm) (p. 22), the c0-theorems of 
Bessaga and Pçlfczynski (A Banach space contains no copy of c0 if and only if 
2 x„ is unconditionally convergent whenever 2 | ƒ(*„)! < +oo for each ƒ E 
X*. Also, if a conjugate space contains c0 then it contains /«,) (p. 22), and the 
Vatali-Hahn-Saks-Nikodym theorem (A sequence (Fn) of strongly additive 
X-valued measures on a a-field 2 is uniformly strongly additive provided 
lim„ Fn(E) exists in X-norm for each E G 2) (p. 23). While the Rosenthal 
lemma links the theories of vector valued measures and the geometry of 
Banach spaces together, the topic that weaves itself through the entire book 
and ties these areas together is the Radon-Nikodym property. Let (Q, 2, ju) be 
a finite measure space and X a Banach space. Then X has the Radon-Niko­
dym property with respect to (Î2, 2, p) if for each ^-continuous vector 
measure G: 2 -» X of bounded variation there is a g G Z*i( ji, X) such that 
G(E) = fEgdii for all E G 2. The space X has the Radon-Nikodym 
property, if X has the Radon-Nikodym property with respect to every finite 
measure space. 
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Before discussing some of the operator and geometric properties equivalent 
to the Radon-Nikodym property, it seems worthwhile to reproduce the short 
history given by Diestel and Uhl: "Some fifty years ago in Latvia, a 
thirty-year-old mathematician in the School of Railways went to the Ameri­
can Counsulate and claimed he had a job waiting for him at Dartmouth 
University. In his possession was a post card saying 'the weather at 
Dartmouth is fine!' It was by this prearranged signal that J. D. Tamarkin 
was able to find his way to the United States. In the United States, Tamarkin 
met J. A. Clarkson and suggested that Clarkson look at differentiability 
properties of vector-valued functions. This was the beginning of the study of 
the Radon-Nikodym property and led to Clarkson's fundamental paper. 
Interestingly enough, this paper which is quite geometric in nature has as its 
avowed object the isolation of geometric conditions on a Banach space X that 
ensure that X-valued functions of bounded variation are differentiable almost 
everywhere, a condition equivalent to the Radon-Nikodym property. This is 
how uniformly convex Banach spaces were born." 

It is comforting that a Banach space has the Radon-Nikodym property if 
and only if it has the Radon-Nikodym property relative to [0, 1] with 
Lebesgue measure (p. 138). The authors amass twenty-three (twenty-nine if X 
is isomorphic to a conjugate Banach space) statements all equivalent to X 
having the Radon-Nikodym property. 

We look at a few of the more rewarding equivalences. 

THEOREM OF LEWIS AND STEGALL (p. 66). A Banach space X has the 
Radon-Nikodym property with respect to (Q, 2, /x) if and only if every bounded 
linear operator T: L^p) -> X admits a factorization 

L^—^+X 

h 
Perhaps the most geometrically satisfying result is the following: 

THEOREM (p. 198). Let X be a Banach space. Then X* has the Radon-Niko­
dym property if and only if X* has the Krein-MiV man property. (A Banach 
space has the Krein-MiV man property if each closed bounded convex subset of 
X is the norm closed convex hull of its extreme points.) 

Always, a space with the Radon-Nikodym property has the Krein-MiTman 
property. It is not known if the converse is true. 

There are many nice geometrical results given. These involve technical 
concepts, e.g. dentability and strongly exposed points, and will not be stated 
here. However there is a result which should be considered in tandem with 
the famous characterization of reflexivity of R. C James. Namely, 

THEOREM OF MORRIS AND HUFF (p. 207): A Banach space X has the 
Radon-Nikodym property if and only if f or each closed bounded subset A of X 
the collection of x* E X* that attain their maxima on A is norm-dense in X*. 

Perhaps the most pleasing chapter is Chapter VI on operators on spaces of 
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continuous functions. Although much beautiful work is done here we 
mention only one result giving an operator characterization of the Radon-
Nikodym property. 

THEOREM (p. 175). The space X has the Radon-Nikodym property if and only 
if for every compact Hausdorffspace K, every absolutely summing operator from 
C(K) to X is nuclear. (Recall that T: X^Y is absolutely summing if it takes 
unconditionally converging series in X to absolutely convergent series in Y; and 
T is nuclear if T = 2£L, TH9 each Tn has rank one and 2^ || Tn\\ < + oo.) 

Also of interest is the work on Martingales given in Chapter V. Here 
conditions are given in terms of Martingales for spaces to lack the Radon-
Nikodym property. 

The format of the book is that of Dunford and Schwartz, i.e. extensive 
notes and remarks sections. Indeed, these notes and remarks, I feel, are the 
best parts of the book. The bibliography contains a thorough listing of papers 
pertinent to the subject. A brief rundown of the chapter contents can be 
found in Notices Amer. Math. Soc. 24 (1977), p. 296. 

An annoying aspect of the work is that sometimes the enthusiasm and 
exuberance for their subject matter leads the authors to some strange 
sentence constructions. Here are a few examples. 

(p. 87) " . . . Uhl asked whether a separable Banach space X with the 
Radon-Nikodym property is isomorphic to a subspace of a separable dual 
space? Stegall showed that if X is a dual space, the answer is yes." One 
wonders how long it took Stegall to do this! 

Fortunately they give a reference to p. 195 where the actual result of Stegall 
appears. [The authors should be given credit for making Stegall's Joyceian 
mathematical prose most comprehensible.] 

Another interesting statement of the above genera is given on p. 117: 
"Finally we remark that the closely related problem of characterizing for 
which Banach spaces X is Lx(fi, X) weakly sequentially complete is open." 

There even appears to be a slip up in their amusing "six lemma" (p. 255): 
"Let X and Y be 5-spaces and T: X -» Y be a bounded linear operator 

that admits the factorization 
T 

X 1 >Y 

\D 

1 I 2 W 3 E 4 L 5 R 6 

where D, R, L, E, W, I and S axe all bounded linear operators and Zi9 

i = 1, 2, 3, 4, 5, 6, are all Banach spaces of type Lx(n)9 L2(ix) or C(Q) such 
that exactly two of the Z/s are of each type and no type appears consecu­
tively in the above factorization. Then T is nuclear! Of course the converse 
holds." 

I'm not sure what the converse is. If they mean any nuclear operator 
admits such a factorization then, of course, the result is false! Anyway what is 
clear about the "six lemma" is that W, J9D,A,V,I and S should object! 
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Of course it isn't too important but I've always thought that Pitt is 
responsible for the result that any T: lp-*lq,p > q, is compact. The authors 
ascribe this to Paley (without reference). But, enough of this! 

The book is highly enjoyable reading for anyone and must reading for 
anyone interested in vector measures or the geometry of Banach spaces. 

The book, like most first editions, has misprints. No one will have difficulty 
with "language operators" (p. 148) or "lconverging" (p. 182) [when read in 
context] and serious readers will find the subscripts lost or interchanged in 
some of the displays. 

Thus the only serious mistake is the misspelling of the reviewer's name (p. 
253). 
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Jordan pairs, by Ottmar Loos, Lecture Notes in Math., vol. 460, Springer-
Verlag, Berlin and New York, 1975, xvi + 218 pp., $9.50. 
Jordan pairs are a generalization of Jordan algebras and Jordan triple 

systems.1 The archetypal example of a Jordan algebra is the hermitian n X n 
matrices x* » x (for x* =•* x ' the conjugate transpose) under the product 
U(x)y » xyx, while an example of a Jordan triple system is the rectangular 
n x m matrices under P(x)y » xy*x. Such Jordan systems have recently 
come to play important roles in algebra, geometry, and analysis. In particular, 
the exceptional Jordan algebra H3(K) of hermitian 3 x 3 matrices with 
entries from the Cayley numbers K has important connections with excep­
tional geometries, exceptional Lie groups, and exceptional Lie algebras. 

Although the structure of finite-dimensional Jordan algebras is well known, 
the structure of Jordan triple systems is generally known only over algebra­
ically closed fields. The main obstacle to attaining a complete theory for 
triple systems is the paucity of idempotents: most nonassociative structure 
theories lean heavily on Peirce decompositions relative to idempotents, and a 
general triple system may have few "idempotents" x with P{x)x * x. For 
example, the triple system obtained from the real numbers via P(x)y * 
-xyx has no nonzero idempotents at all. However, a well-behaved triple 
system does have many pairs of elements (x,y) such that P(x)y = x, 
P(y)x « y (in the above example, for any x =£ 0 we may take y » — x~l). 
Such a pair furnishes a pair of simultaneous Peirce-like decompositions of the 
space, which could provide useful structural information if the two didn't 
keep getting tangled up in each other. 

Even in Jordan algebras, many concepts involve a pair of elements (x,y). 
Frequently this takes the form of x having a certain property, such as 
idempotence (x2 * x) or quasi-invertibility (invertibility of 1 — x), in the 
>>-homotope; this roughly corresponds to the element xy having that particu­
lar property, and so serves as a substitute for the associative product xy which 
doesn't exist within the Jordan structure. (The y-homotope of an associative 

*For a quick background survey of these systems see the article, Jordan algebras and their 
applications in this issue. 


