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0. Introduction. This paper will survey recent progress in understanding the 
propagation of singularities of solutions to linear partial differential equations 
Pu — f> particularly hyperbolic equations, such as the wave equation (32/3f2 

- A)w = ƒ. Theorems describing this behavior, for general initial data, 
probably began with Lax [21] and Courant and Lax [6], although work on the 
problem dates back further. The method of analysis, known as geometrical 
optics, was used by Sommerfeld and Runge [44] and Birkhoff [2] in an effort 
to construct approximate solutions to the wave equation. This method was 
forged into a powerful tool, the theory of Fourier integral operators, by 
Hörmander [15], [16] and applied to get very general global results on 
propagation of singularities in [16] and [8]. 

In order to give a precise statement of Hörmander's theorem on 
propagation of singularities, we need to define the wave front set of a 
distribution, denoted WF(w), where u e fy'(ti) is a distribution on some 
domain Q c R". WF(w) was introduced by Hörmander [15], based on Sato's 
notion of S. S. u [42]. WF(w) will be a subset of r*(Q) «ÖXR". One way to 
give the definition is to say (JCO, £0) & WF(u) provided there is a <p e C0°°(Q), 
<p = 1 near JCQ, such that (<p«HÖ is rapidly decreasing as |£| -» oo for £ in 
some open cone T containing £>• An equivalent definition, using pseudo 
differential operators, will be given in §1. It turns out that the projection 
r*(Q)-»Q maps WF(w) onto the singular support of u (sing supp w), so 
WF(M) provides finer information than sing supp u. 

Now suppose Pu = ƒ in Q. We suppose P is a differential operator, or more 
generally a pseudo differential operator of order m, whose principal symbol 
pm(x, I), homogeneous of degree m in £, is real valued. Let q(x> Ö * 
|£|x~mpm(xi D, and consider the Hamiltonian vector field on T*(Q): 
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THEOREM (HÖRMANDER). WF(M) \ WF(/) is contained in chaxpm = {(*, Ç): 
pm(x, (•) * 0} and is invariant under the Hamiltonian flow generated by Hq in 
r*(0)\WF(/). 

This result says nothing about the reflection of singularities of u at the 
boundary 30, which we now suppose to be smooth. If P is a scalar 
differential operator of order m, and (y^ f0) G r*(30), there will be k points 
(y0, ij) G T*(Q) lying over C * Q (0 < k < m) (i.e., (y* Q « K * ( ^ Jy) 
where K: 30 -» 0) which belong to char P, assuming 30 is noncharacteristic. 
If we denote by yy null bicharacteristic strips passing through (y^ §) (i.e., 
integral curves of Hq\ and if we divide this set of rays into two groups, say 
y , , . . . , yp and ty+„ . . . , yk, we will say these two groups of rays are related 
by reflection. If u, solving Pu * ƒ, satisfies certain boundary conditions, say 
Bu * g on 30, one wants to know when smoothness of u along y , , . . . , ^ 
implies smoothness along the reflected rays y 7 + 1 , . . . , yk. The simplest case to 
treat is when all the rays yl9..., yk are transversal to 30. In such a case 
approximate solutions to Pu = ƒ, Bu ^ g can be computed using Fourier 
integral operators. Lax and Nirenberg [36] and also Chazarain [5] treated the 
Dirichlet problem, and general boundary value problems were treated by 
Majda and Osher [26] for scalar equations and by Taylor [48] for systems. It 
turns out that a Lopatinsky condition, reminiscent of the condition for 
regularity of an elliptic boundary value problem, leads to such reflection of 
singularities phenomena. This result is described in §2. We should mention 
that certain boundary value problems that occur naturally, for example in 
linear elasticity, do not satisfy this Lopatinsky condition, and more com
plicated phenomena, such as Rayleigh waves, occur; this is also discussed 
in §2. 

The grazing ray problem, solved by Taylor [49] and Melrose [30], deals with 
the propagation of singularities along rays which hit 30 tangentially, locally 
staying inside 0 near the point of contact, which is of precisely second order. 
This work leads, for example, to a complete analysis of the singularities of 
solutions to the wave equation (d2/dt2 — A)u * 0 on the exterior of a smooth 
convex obstacle K in R", with for example Dirichlet or Neumann conditions 
on dK. In the case of the Dirichlet problem, important progress had been 
made by Ludwig [24] and by Morawetz and Ludwig [35]. The construction of 
approximate solutions needed to treat the grazing ray problem involves a 
class of operators more complicated than Fourier integral operators and is 
described in §3. It was only with the solution of the grazing ray problem that 
tools became available to give rigorous mathematical treatments of a number 
of problems of classical scattering theory involving a convex obstacle, such as 
the analysis of the asymptotic behavior of the scattering matrix and the 
justification of a number of results that previously had been obtained using 
Kirchoff s approximation. We describe some of this work, due to Majda [25], 
and Majda and Taylor [28], in §4. 

Time has not permitted us to discuss the recent work of Melrose and 
Andersson [1], [33], on propagation of singularities near the boundary on the 
interior of a convex region (the gliding ray problem) or the propagation of 
singularities of solutions to equations with multiple characteristics, where the 
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theorem of Hörmander mentioned above gives an inadequate description, on 
which progress has been made by Sjöstrand [43], Chazarain [4], Melrose [32], 
and others. Nor do we discuss the propagation of analytic singularities, for 
which we refer the reader to [42], [3], and [18]. 

We will use the following notation for pseudo differential operators and 
symbol classes. S£s is the symbol class used by Hörmander in [17]. We say 
p(x, 0 e S£ô provided 

iz>/z>^(^^)j < C7 (̂i -h^ir-^^^^. 
We say p(x, £) G Sm if p(x9 £) is asymptotic to a sum of symbols homo
geneous of degree m9 m - 1, m - 2, etc.; Sm c S™0. If 2 is some symbol 
class and/>(JC, Q e 2, we say the operatorp(x9 D) belongs to OP 2. Thus we 
use the operator classes OP S^p OP Sm

9 etc. 

1, Fourier integral operators and propagation of singularities. The basic 
phenomenon öf propagation of singularities can be obtained by analyzing the 
first order hyperbolic pseudo differential equation 

•Jj w - i\(t9x9 Dx)u + g, (1.1) 

*(())«ƒ (1.2) 

where we suppose \{t9 JC, Dx) is a smooth family of first order classical pseudo 
differential operators, 

\(t, x, Dx)w =f\(t, x, Ç)eix*w(Ç) di 

with \(t9 x, £) ~X,(f, JC, £) + Xo(f, JC, £) + • • • , Xj being homogeneous of 
degree y in £. We assume \x(t, JC, Q is real valued. Existence and uniqueness 
of solutions to (1.1), given g G Hs and «(0) » ƒ E Hs, follows from simple 
energy estimates; see for example [46, Chapter IV]. We can construct an 
approximate solution to (1.1), (1.2) (in case g * 0) as a Fourier integral 
operator, of the form 

v(t9 x) « ƒ a(t9 x, &«'-**/ (0 di (1.3) 

Here a(t9 JC, £) is a classical symbol, a(t9 x9 £) — 2 j i 0
 aj(t> x> 0 ^ t h af 

homogeneous in £ of degree —y\ The "phase function" <p is real valued and 
homogeneous of degree 1 in & and |Vx<p| ¥" 0. The amplitude a and phase 
function <p are obtained as follows. Applying 3/3/ — i\ to (1.3) yields 

( f - iXY ' S^'a+a'~ ib)e'v(l) di (1,4) 

where b(t9 JC, £) is defined by 

*(i9x,Dx)(ae*) = be*. 

The fundamental asymptotic expansion lemma for pseudo differential opera
tors implies that b is a symbol of classical type, and we have 

b(t, x, £) ~ 2 4 - \w(t, x, V<P)D; (a(t,y, g***"*0)! 
a>0 "• y 
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where p(x9 y9 0 = <p(t9y9 £) - <p(/, x9 Q - (y - x) • Vx(p(t9 x, £). In particu
lar, the principal symbol of b is a^x(t9 JC, Vx<p). In order that the right hand 
side of (1.4) be smooth, we require that the full asymptotic expansion of 
i(pta + at — ib vanish. Setting the principal part equal to zero we get the 
eikonal equation 

<pt = \x{t9x9Vx<p). (1.5) 

This is a first order nonlinear equation, which has a solution for small |/| if 
<p(0, JC, I) is specified. We set <p(0, JC, £) = x • £. Setting further terms equal to 
zero, we get linear differential equations for the aj(t, x9 £), called the transport 
equations. For example, 

( i - 1 , ^ i)"°-(*•+£***•>)*-°- <i6> 
We specify as initial condition that a^O, JC, 0 = 1; for y > 1 we set a,(0, x, D 
« 0. Thus (1.3) leads to t>(0, x) = ƒ(*), by the Fourier inversion formula, 
while (1.4) implies that (3/3/ — i\)v is smooth. Energy estimates imply that v 
differs from the exact solution u to (3 /3 / - i\)u = 0, u(0) = ƒ, by a smooth 
error. 

In order to make sure (1.3) is well defined for distributions ƒ G S f(Q)9 and 
to justify (1.4), we use an integration by parts procedure similar to the method 
of defining the Fourier transform of a tempered distribution. Note that 
Le"p = fa* if L = | VJC<p|~2VJC<p • Vx, which is a vector field whose coefficients 
are homogeneous in £ of degree — 1. If M = V is the formal adjoint of L, 
and if Ü e C0°°, we have, formally 

(t>, ƒ « < ƒ (I) d£j = ffv(x)a(t9 JC, $)*«•ƒ (I) rf{ <fc 

- ƒ ƒ M* (t?a)^/ (|) </£ dx (1.7) 

(one need only worry about the integral over |£| > 1). If a E 5° as above, we 
see that Mk(va) has order — k in £. Since for any ƒ e S ' , ƒ(£) has at most 
polynomial growth, we see that, for k large enough, the last integral in (1.7) 
will be absolutely convergent. We can take this formula to define (1.3). 

For any fixed /, the wave front set of v(t9 x) = A(t)ƒ can be analyzed as 
follows. To say (JCO, ^ ) g WF(^4(/)/) is equivalent to saying that for some 
X E C0°°, x(x) ™ 1 near JCO, <x(Jc)e~**"*,^(0/> is rapidly decreasing as 0 -» oo 
on some conic neighborhood T of ^ Thus we consider 

(x(x)e-ixU(t)f) 

- ffff(y)x(x)a(t9 x9 Q* * < * © - « - * * 4 & rf£ (1.8) 

the integral with respect to >> being taken in the distribution sense, and the £ 
integral being regarded as an oscillatory integral, like (1.3). 

Before we proceed with the analysis of (1.8), let us make some preliminary 
observations that will simplify the analysis. Suppose WF(f) is contained in a 
small conic neighborhood of (yQ, TJ0). We may as well suppose that ƒ (y) is 
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supported near j>0. Also, since A (t) ƒ defined by (1.3) would only be altered by 
a smooth function, we may as well suppose that a(t9 x9 £) is supported for £ in 
a small conic neighborhood of TJ0, and that a(t9 x9 £) = 0 for |£| < 1. 

With these hypotheses, we can show that (1.8) is rapidly decreasing as 
9 -» oo in a cone T with the property that, for 9 G T, the function $ = 
<p('> *> £) ~~ y ' I "~ x • 0 has no critical point as a function of x and £, i.e., 
assuming that, for 9 G T, IV̂ cp - 0| + ||| |V̂ <p - .y| is bounded away from 0 
(on|£|, |0| > 1). Indeed, let 

^ - [ i V ^ - ^ + flÉI + I^IV^-jrl2]"1 

•[(V,<P~0)-Vx + (||| + |ö|)2(V,<p-^).V,], 

which yields Le'* = fe*. By hypothesis, the coefficients of L are smooth for 
9 E T, (f, x, |) G supp a. It follows that 

(xüx)e-»9A(t)f) =jfff(y)(L')k(x(x)a(t, x9 £)><* ̂  dx d£. 

Taking k large, one can show without difficulty that this is rapidly decreasing 
as 9 -» oo in T. Since any ƒ G & ' may be decomposed into a finite sum of 
fjle S ' with small wave front sets, this argument establishes the following. 

PROPOSITION 1.1. IfA(t)fis given by (1.3), then 

WF(A{t)f) c {(*, 0): (V (̂p, 0 G WF{f) for some 

(x9 | ) G come supp a and VJC<p(/, x, £) = 9 }. 

7%ws WF(ƒ) a«rf WF(.4 (f)ƒ) are related by the canonical relation 

(V*<P, I) h> (x, Vxç>). 

Given the eikonal equation (1.5) for <p, one can show that this trans
formation is precisely the flow generated by Hx. Rather than giving the 
details of this here, we will give a different argument relating WF(w(0) to 
WF(ƒ), based on Egorov's theorem. 

Egorov's theorem analyzes the operator A{t)PB{i)9 where A(t) is the 
solution operator to (d/dt)u = iXu defined above, and B(t) solves the back
wards equation, i.e., if (d/dt)u = i\u and u(t) = ƒ, w(0) = B(t)f. P = 
p(x9 D) is a scalar pseudo differential operator with symbol p(x9 Q G S™09 

i.e., \D£Dgp(x9 Ö| < c(l + |||)m" ,a |. In that case, we have 

EGOROV'S THEOREM. Q(t) = A(t)PB(t) is a pseudo differential operator, on 
a compact manifold Q, whose principal symbol (mod SJJf*) ö e#wa/ to 

q{t,x9Q-p(C(t)(x9Q) (1.9) 

w/iere C(0 & the flow generated by the Hamiltonian vector field Hx . 

PROOF. We briefly sketch a proof. We construct an approximate solution Q 
to the equation Q\i) = d/dt(A(t)PB(t))9 i.e. 

Q'(t) = /Ag (0 - iQ (t)\ mod OP S '°° (1.10) 
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with 0(0) = P9 such that Q(t) is a pseudo differential operator satisfying 
(1.9), and then we show that Q(t) differs from Q(t) by a smoothing operator. 

We specify the symbol q(t9 x9 £) of (?(/) so that (3/3/)# - i°[\,Q] is of 
order — oo, where 

O[KQ] - 2 ? W ) ( D f l ) - (^q)(D^X)}. 

We arrange this by setting q ~ 2„ > 0 ?„(', *, £) with £, E SJJfr. %{U x9 £) 
satisfies the transport equation (3/9/ — HXi)q0 * 0, with initial condition 
ô(0> ̂ ö * P(x> O- The qv f or p > 1 satisfy other transport equations, and 

q„(09 x, Q * 0. Then (1.9) is satisfied for q. 
Showing that Q(t) — Q(t) is smoothing is equivalent to showing A(t)P — 

Q(t)A(t) is smoothing. But if u(t) ~ A(t)Pf and v(t) * Q(t)A(J)f9 then 
w(0) - v(0) = 0 while (3/3/ — i\)(u - t>) is smooth. Energy estimates for the 
hyperbolic operator 3/3/ — iX imply that u — t? is smooth, given any distri
bution/. Thus (?(/) — (?(/) is smoothing. 

For further details of this proof, see Chapter I of [47]. 
Given Egorov's theorem, we will establish the following result on propa

gation of singularities. 

THEOREM 1.2. If the solution u to (3 /3/ - iX)u = 0, u(0)=f is u(i) = 
A(t)f9 then 

WF(w(/)) = C(/)WF(w(0)) 

where C(t) is the one parameter flow generated by HXi. 

In order to prove this result, we use a different characterization of WF(ƒ), 
also due to Hörmander, which uses pseudo differential operators. If p(x9 £) ~ 
2jLoPj(x, £) with pj(x9 0 homogeneous of degree —/ in £, we say p E S°9 

and/>(;c, D) E OP 5°. Char/? * {(*, Ç):p0(x9 Q * 0}. Then 

W F ( / ) « n{chMP:p(x9D)f EC™9p E 5 ° } . 

For the equivalence of these two definitions of WF(ƒ), see [7] or [15]. 
PROOF OF THEOREM 1.2. Let pj(x9 D) be a family of operators in OP 5°, 

each of whose symbols vanishes in a neighborhood of WF(/), but such that 
WF(/) - Dj char/?,-. Clearly pj(x9 D)f E C00 for eachy. If g - A(t)f9 this 
implies that A(t)pj(x9 D)B(t)g EC00. But by Egorov's theorem this is a 
pseudo differential operator, say ^( / , x9 D)9 and char ^( / , x, D) * C(/) 
char/?y. It follows that 

WF(^(/) / ) c H C(t)chzrPj = C(/)WF(/). 
J 

Reversibility of the hyperbolic equation (3/3/ — i\)u =•= 0 yields to reverse 
inclusion, so WF(A(t)f) * C(/)WF(/), as asserted. 

Note that the computation of u{t) via the geometrical optics construction 
(1.3) yields Theorem 1.2 for small /. Similarly, it yields WF(w(/)) * 
C(/, s)WF(u(s))9 where C(/, s) is the flow generated by the time dependent 
vector field HX9 from time s to time /, provided s and / are sufficiently close. 
A connectedness and compactness argument then yields Theorem 1.2. In 



SINGULARITIES OF SOLUTIONS TO WAVE EQUATIONS 595 

order to prove Theorem 1.2 in a fell swoop this way one would need a global 
construction of a parametrix, such as given in [8]. One way to obtain a global 
parametrix is as a product of solution operators with short time steps. The 
analysis of products of Fourier integral operators and the global construction 
of parametrices form some of the deepest parts of the theory of Fourier 
integral operators, and we refer the reader to Hörmander [15], Duistermaat 
and Hörmander [8], and Duistermaat [7] for discussion of these topics. 

Theorem 1.2 is not really equivalent to Hörmander's theorem, but we can 
obtain that result by a simple trick. Thus if Pu = ƒ, P has order m9 with real 
principal part, choose an elliptic operator E of order 1 - m and let X = EP, 
so you get \u = Ef = g. Now introduce an extra variable, t9 and let v(t9 x) = 
u(x). Then (d/dt)v = 0, so you have 

t;(0) = u. 

From this it is not hard to deduce, via Theorem 1.2, that WF(w) \ WF(/) is 
invariant under the Hamiltonian flow generated by HXi on J*(Q) \ WF(/). 

If P is not a scalar but a k X k matrix of operators, one can analyze the 
singularities of solutions to Pu * ƒ by multiplying by a convenient operator 
E9 of order 1 — m9 so that the principal symbol qx of EP is scalar. For 
example, one could take the principal symbol of £ to be |£|1~*m times the 
cofactor matrix of Pm9 so qx = ^ " ^ d e t Pm. However, for many systems one 
encounters in practice, it is best not to take the determinant of the principal 
symbol. To take a trivial example, suppose P is a 2 X 2 system whose 
principal symbol Pm(x9 Q = pm(x9 QI9 wherepm(x9 Q is scalar, real valued. If 
Pu e C00, WF(M) C {(*, £): pm(x9 Ç) = 0}. The above method implies that 
WF(«) is invariant under the flow on T*(Û) generated by Hq9 with qx(x9 Q * 
|£|1_ jPm(*> £)2. But clearly all characteristics of qx are double, so Hq » 0 on 
char/*, and hence the flow C(t) is the identity on charP, os we get no 
information about propagation of singularities by taking the determinant. 
However, the obvious result of interest is that WF(w) is invariant under the 
flow generated by H^ with qx = lÉp'TPm-

A more important example of this phenomenon is given by the equations of 
linear elasticity for an isotropic medium: 

32 

Lu = —j u - (À + /i) grad div u - /iA« * 0 0-11) 

where u * u(t9 x) is a 3-vector field on R X R3. The quantities \ and /A, called 
the Lamé constants, are assumed positive. The principal symbol of L is 
L2(t9 x9 T, Q - - T2/ + (X + /A)|I|2^ + M|I|2 where P^ is the orthogonal 
projection of R3 onto the space spanned by £ For each (T, £) ^ 0, this is a 
symmetric matrix, with a simple eigenvalue (X + 2/x)|£|2 — T2 and a double 
eigenvalue JH|£|2 — T2. The analysis of propagation of singularities of solutions 
to these equations of linear elasticity is a special case of the following result, 
which can be proved in the manner indicated above. 

COROLLARY 1.3. Let Pm(x9£) be a k X k self adjoint matrix, and suppose 0 is 
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an eigenvalue of multiplicity exactly m, on each connected component Tj of 
char P = {(*, £): det Pm(x, |) = 0}. Furthermore, suppose that there is an 
eigenvalue iy(x9 |)> of multiplicity exactly ny on some conic neighborhood ofTJ9 
with iij{x, 0 = 0 on Tj9 % smooth. If Pu = ƒ, then WF(w) C UjTj U WF(/), 
and (WF(H) n Tj) \ WF(/) is invariant under the flow (on Tj \ WF(/)) genera-
tedby H^i-n^. 

For further details on propagation of singularities from the point of view 
espoused in this section, we refer the reader to Chapter I of [47]. 

2. Reflection of singularities. In this section we shall examine reflection of 
singularities of solutions of first order equations of the form 

£ « - < * (21) 
in a region Q with boundary 3Q given by y = 0; say Q = R+ X 3Q. Here 
G = G (y) = G (y, x, Dx) is a smooth one parameter family of pseudo 
differential operators of order one on 30, G(y) E OP S1; u takes values in a 
vector space, Ck

9 and Gis&k X k matrix of operators, with principal symbol 
Gi(y, x9 Ö, homogeneous of degree one in {. We suppose the characteristics 
of 3/3/ - G are simple. On the boundary y = 0, a boundary condition is 
prescribed: 

Bu(0)=f (2.2) 

where B G OP 5° is a pseudo differential operator of order zero. 
There is no loss of generality in dealing with first order systems, since 

higher order equations can be reduced to first order systems by a standard 
argument (see, for example, Chapters IV and V of [46]). 

We suppose that ƒ has wave front set in a small conic neighborhood of 
(x0, £0) E r*(3Ö), which is no real restriction. Suppose that j null 
bicharacteristic strips yl9..., jj pass over (XQ, |0) E T*(dQ). We are treating 
the nongrazing case in this section, so we suppose the yy all intersect 30 
transversally. It's not too hard to see that this hypothesis implies that the 
principal symbol of G (y) is similar to a matrix of the form 

A, 

[ A + 
near (x0, £>)> where \(y, x, Q are real valued (scalar), the spectrum of 
A„(y, x, Q has negative real part, and the spectrum of A+(y9 x, £) has 
positive real part. This similarity can be effected, near (JCO, £0), by an invert-
ible matrix function U(y9 x9 Q; Gx « UGXU~X near (x& £0). 

If i//(*> Ö is ^ z^o order symbol supported in a small conic neighborhood 
U0 of (XQ, |0) and equal to 1 on a smaller conic neighborhood, let v « 
U(y, x9 D)\f/(x9 D)u. Then v solves the system 

- G, (2.3) 
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j - v = Gv + F (2.4) 

with boundary condition 

UBU-lv(0)=f. (2.5) 

Here G = UGU~l + UyU~l G OP Sl has principal symbol Gx(y9 JC, £). F = 
UW, G]u and ƒ = C/[5, i//]w(0) + £# plus smooth functions. With (2.4) we 
have decoupled the equation (2.1), at least in the principal part. There is 
coupling in the zero order terms. It is convenient to completely decouple (2.4), 
modulo a smoothing operator. We briefly describe how this can be accom
plished. 

We consider a slightly more general problem. Let v solve the system 

±v-(F
 E)» + A» (2.6) 

where G = (F
E) has symbol homogeneous of order 1 and A has order zero. 

The assumption we shall make on the symbols F(y9 JC, Ç) and E(y9 JC, Ç) is 
that these two matrices have disjoint sets of eigenvalues, for each (y9 JC, £). 
First we decouple terms of order zero by a substitution w(1) = (1 + Kx)v9 

with Kx E OP S ~l chosen appropriately. This yields 

GH>(1) + (KXG - GKX + A)wil) + • • • . 

making the of f-diagonal term of KXG — GKX + A vanish 

\ \ ^ 2 1 ^ 2 2 / / 

is equivalent to having, on the symbol level 

KX2F - EKX2 = -AX2, 

K2XE-FK2X=-A2X. (2.7) 

Since the spectra of E and F are assumed disjoint, it is a simple linear algebra 
exercise to obtain unique solutions Kx2 and K2X for (2.7). This decouples the 
zero order part of (2.6). One can continue in this fashion, setting M>(2) = (1 + 
K£wil\ with K2 E OP S "2, etc. Finally, let w = (1 + K)v with 

1 + K (1 + K2)(l + Kx) 

to obtain an equation for w which is completely decoupled, modulo a 
smoothing operator. 

Applying this decoupling procedure inductively, we can write w « ( l + 
K)v with K E OP S~l such that 

dy W (1) Œ 

If we specify 
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\Wl 1 

I W _ J 

where, modulo unimportant inhomogeneous terms, wv solve the equations 

-fy w, = fo(y> *> Dx)w, (2.8) 

and w+ and M>_ solve, respectively 

A w+-a„(y,x9Dyw+9 (2.9) 

A H^=a+0>,x,Z>)w_ (2.10) 

and furthermore the principal symbol of ju> is A„, the principal symbol of 
tf-(>% x9 Dx) is .4_, and the principal symbol of a+(y9 x9 D) is A+. The 
boundary condition (2.2) becomes essentially 

BU~l(l + Kylw(0) = f. (2.11) 

The reflection of singularities phenomenon we consider is described simply 
as follows. Suppose we know that u is smooth in a conic neighborhood of the 
rays y„ . . . , y, (0 < / < j) passing over (x^ £0) E r*(3îî), where y, is a null 
bicharacteristic strip associated to d/dy — / \ . Note that this is equivalent to 
the smoothness (up to the boundary y =•= 0) of wl9..., wt. More generally, 
suppose we know the nature of the singularities of u near yl9..., y;, i.e., 
suppose we know w„ . . . , wh mod C00. We want to construct a parametrix 
for u(y)9 which in particular will tell us the nature of the singularities of 
H>/+I, . . . , Wj, and also the boundary regularity of w+, hence the complete 
nature of the singularities of u. (Note that since w+ and w_ solve elliptic 
evolutions, forward and backward, respectively, they are automatically C°° 
inside (0, Y) x9fl and w_ is smooth up to the boundary y * 0.) The 
following result is a consequence of the conversion of (2.1), (2.2) into 
(2.8M2.11). 

THEOREM 2.1. Suppose that, given the values of Wj(0),..., w7(0) and of 
w_(0), the system (2.11) is an elliptic system for w /4>1(0),..., > (̂0), w+(0). 
Then smoothness of u along yl9..., yt implies smoothness of u along 
Y/+i> • • • 91'p provided (x^ |0) £ WF(/). Furthermore the parametrix for u can 
be constructed by solving (2.11) for w/+ ̂ 0 ) , . . . , Wj(0)9 w+(0), then solving (2.8) 
for w^x(y)9..., Wj(y) and (2.9) for w+(y)9 and then writing u = U~~\\ + 
A : ) - 1 * . 

Examples where this theorem works include the Dirichlet and Neumann 
problems for the wave equation (32 /9/2 - A)u - 0, reduced to a first order 
system, assuming that tangential bicharacteristics don't pass over (XQ, £>). In 
this case, over each (XQ, Q E r*(3Q) passes either two rays, which are 


