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CRYSTALLINE VARIATIONAL PROBLEMS 

BY JEAN E. TAYLOR1 

Surface tension is commonly thought of as a fluid phenomenon; the mere 
mention of the term brings to mind bugs skimming over water, liquids rising 
or falling in capillary tubes-and soap films and soap bubbles. But there is in 
fact a notion of surface tension (which is surface energy per unit surface area) 
for the interface between any two substances, or even between one substance 
and a vacuum. This surface energy arises from the fact that atoms (or 
molecules, or ions) of a given substance have a different environment at the 
interface between that substance and another than those in the bulk of the 
substance. (Sometimes even the composition of the surface is different from 
the bulk; this occurs for instance in soapy water having an interface with air.) 

In this article we will deal with "surface tension functions" which are an 
outgrowth of the surface tensions of solids having their atoms arranged in 
some regular way. If one fixes the orientation of the lattice in R3

9 then the 
environment of an atom on a planar interface between something else and 
such a regular structure can be different for different plane directions. Thus 
the surface tension between one substance and another can be a function 

F:G0(392)->R + 

where G0(3, 2) is the Grassmannian of oriented 2-planes through the origin in 
R3 and R + is the set of positive real numbers. For the interface between, say, 
soapy water and air, the function JF would be identically a constant; but for 
that between, say, a single crystal of ordinary salt (NaQ) and air, F would 
depend quite strongly on direction. If one wishes to allow the regular 
structure to vary over relatively long distances, one can even obtain a 
function 

F:R3X G 0 (3 ,2 ) -»* + . 

(This notion of surface tension for solid bodies is not at all esoteric, by the 
way: it is commonly used by metallurgists and others who deal with the 
surface properties of materials.) 
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Functions from G0(3, 2) to R + are already well known in the calculus of 
variations as treated in the context of geometric measure theory. They are 
called 2-dimensional constant coefficient oriented integrands on R3, since 
they can be integrated over any surface S which has an oriented tangent 
plane Tan(S, x) at at least almost every point: the integral of F over S is then 
JsF(Tan(S, x)) dfâx. (Here 302 is Hausdorff 2-dimensional area, which 
agrees with any other reasonable notion of area on smooth 2-dimensional 
submanifolds of R3 and additionally gives a precise meaning to the area of 
surfaces with singularities.) The typical problem is to minimize the integral of 
an integrand, subject to various possible side conditions such as a surface 
having a given boundary (in any one of a variety of senses) and/or enclosing 
one or more given volumes. For integrands coming from surface tension, this 
amounts to finding the surface of least energy satisfying the side conditions 
(we are, of course, neglecting here a large number of other possible contri­
butions to energy, such as energy from curvature-including edges and 
corners-but the above is still usually a reasonable model). Since physical 
systems are in equilibrium if and only if they are at a (local) minimum of 
total energy, it is of great importance to know such things as the existence, 
uniqueness, regularity, singularity structure, and construction of shapes 
minimizing surface energy. 

Mathematically, these questions have been addressed in the past primarily 
for the area integrand F = 1 (minimizing the integral of this integrand 
produces minimal surfaces), and more generally for smooth elliptic integrands 
[Al]. But integrands which are surface tension functions of solids with regular 
lattice structures are not elliptic, as will be indicated in §§2 and 3. 

A class of nonelliptic integrands which include such surface tension 
functions is isolated below and called crystalline. My object is to consider all 
the above problems-existence, uniqueness, singularity structure, and 
construction-for surfaces having a prescribed boundary and minimizing the 
integral of a crystalline integrand on R3. It will be illustrated how this 
knowledge can be used to give more information on surfaces minimizing the 
integrals of any integrand on R3. Many of the results of this article already 
extend to higher dimensions; extension of the others is an active area of 
research. 

This article is in seven sections. The first gives a classical construction, the 
Wulf f construction, for a given integrand F and a proof that the result of the 
construction is the shape which has uniquely the least surface integral for the 
volume it contains. This shape is called the crystal of the integrand F, and F*$ 
whose crystals are polyhedral are called crystalline. The second section gives 
examples of integrands and their crystals. The third details the relationship 
between crystalline integrands and other integrands, and between general 
crystalline integrands and convex crystalline integrands. The fourth section 
produces the most fundamental F-minimal surfaces for the prescribed 
boundary problem. 

In the fifth section, a volume-maximizing criterion is given for selecting an 
F-minimal surface in case there is more than one such solution for a given 
boundary; in the sixth section, such a volume-maximizing F-minimal surface 
for a crystalline F is shown to have its tangent planes restricted to a specific 
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finite set provided a condition is imposed on the boundary (boundaries 
satisfying this condition are, however, C°-dense in the space of all 
boundaries). Finally, in §7 a procedure for the explicit construction of 
F-minimal surfaces satisfying an additional boundary condition is outlined 
(without proof). By the results of §2, this procedure produces explicit 
approximations to a surface minimizing the integral of any given integrand. 

Before we begin, however, a little terminology is in order. (For the 
terminology of geometric measure theory in general, see [Fl] or [F2].) The 
class of surfaces to consider in minimizing surface energy should involve 
oriented surfaces of finite area forming at least part of the boundary of a 
region and having a well-defined oriented unit normal, at least 3<? almost 
everywhere. Such surfaces, if they also have nice boundaries, are represented 
naturally by elements of the class I2(R

3) of integral currents of dimension 2 
on R3. For the purely mathematical questions, also, integral currents are a 
natural domain of the problem. A 2-dimensional integral current S 
considered in this article has in particular the following ingredients: (1) a 
measure \\S\\ on R3, which is simply a positive-integer-valued function m (the 
multiplicity) times 302 restricted to a set, spt S, which can be arbitrarily 
closely approximated (in 3(? measure) by a 2-dimensional C1 manifold, (2) a 
GQ(3, 2)-valued function S defined for ||5|| almost all x; S(x) is just the 
oriented tangent plane to that underlying set at x, and (3) an oriented 
boundary, dS, which has properties like (1) and (2) but with 1 replacing 2 
throughout. Thus the integral F(5) of F over the integral current S is 

F(S)=fF(S(x))d\\S\\x. 

The mass of 5, M(5), is defined to be H-SHCR3) (which is just 
Jspt5m(x)rf3(?x). Since the integral currents considered in this article 
correspond to "(y, 8) restricted sets" [A2], one need not be concerned here 
with the more pathological currents. 

We will also consider top dimensional integral currents (elements of I3(R
3)) 

in the case where volume constraints are used. An open set with positive 
orientation, finite volume, and piecewise C l boundary which also has finite 
area is represented by such a current, as is any element in the closure of the 
space of such sets under the distance N defined by 

N (5, T) - M(5 - T) + M(95 - dT). 

In fact, using the strong approximation theorem [Fl, 4.2.20], one can show 
that this closure includes all integral currents with positive orientation and 
multiplicity function 4-1 everywhere. 

A very important property of integral currents is compactness: every 
sequence of integral currents whose supports he in a bounded region, whose 
masses are bounded, and whose boundaries have bounded masses, has a 
subsequence which converges (in the "flat" topology-see [Fl] or [F2]) to an 
integral current satisfying the same bounds [F2, 4.2.17]. 

Another notion we will use occasionally is that of a varifold. A varif old V9 
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in the context of this article, also has a measure || V\\ which is 3(? restricted to 
a relatively nice set and a "tangent plane" function defined at || V\\ almost all 
points; the difference is that the "tangent plane" can be independent of the 
actual tangent plane of the surface and it can be a probability distribution of 
planes, rather than a single plane. A simple example arises in §3. If the 
"tangent plane" distribution does agree with the actual tangent plane to the 
underlying surface at || K|| almost all points, then we say V is the varifold 
naturally associated to that surface. See [Ad] for further details. 

1. The Wulff construction and the crystal of an integrand. We call 

F:G0(/i + I,/*)-»/?* 

a (constant coefficient, codimension 1, oriented) integrand on RH+l. 
Although integrands can be quite wild, to each integrand F there is associated 
a convex oriented geometric object, its crystal (defined below), which seems 
to contain all the essential information about F. In particular, any two 
integrands having the same crystal also have the same geometrical solutions 
to the problem of minimizing-subject to having a given boundary-the 
integral of the integrand (Theorem 3.3). And in a sense, the wilder the 
integrand is, the simpler its crystal becomes, with many of the more intricate 
integrands having polyhedral crystals. In this case, which is the main one 
considered in this article, the crystal alone provides many barriers (see §4); 
these are then the major tools used in proving the regularity of the solutions 
and in constructing some of them. There is even no need to have the 
integrand be bounded; extended integrands 

F:G0(n + 1, * ) ->{ / : 0 < * < oo} 

have crystals, and an example of such an extended integrand is given in §2. 
The basic property of the crystal of an integrand is that it is the shape having 
the least surface integral for the volume it contains (Theorem 2.1), and 
hence if F is the surface tension function of a physical material, the crystal of 
F should be the equilibrium shape of a lump of that material. (Since such 
problems as mass transport and nonequilibrium growth in fact occur for any 
sizable lump, the crystal is sometimes called the infinitesimal equilibrium 
shape.) 

The crystal of an (extended) integrand F is defined to be the result of the 
Wulff construction: 

WULFF'S CONSTRUCTION. Let F be an integrand or extended integrand on 
Rn+l and let F* be the dual function defined on the unit sphere dBH+l(09 1) by 
F*(v) * F(*v)for each v in dBn+\0, 1); here *v denotes the dual of v and 
hence can be regarded as an element of G^n + 1, n). 

Plot F* radially: for each v in dBn+\0, 1), go out a distance F*(v) in the 
direction v (see Figure 1). Now at each point F*(v)v of this polar plot, discard 
the oriented half space whose boundary contains that point and has tangent plane 
-(*v) (see Figure 2). The result of the Wulff construction is the remaining set 
in RH+\ with positive orientation, and is denoted WF (or W, if F is clear from 
context). 
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Plot of F* FIGURE 1 

FIGURE 2 

Wulffs 

Construction 
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In terms of a formula, 

WF= H {xGRn+l:(x,v) < F*(v)} 
t>ea£n+,(0,1) 

(with positive orientation). 
An alternate description of the Wulff construction developed in [Fu] is as 

follows: with <•, • > the standard inner product on R3 and | • | the standard 
norm, we define the operator 

W: integrands -» integrands, 

W(F)(<n) - inf{ F(*H>)<*TT, w}"1: w E R3, \w\= 1, <<V, w) > 0} 

for any integrand F and each TT E G0 (n + 1, n). 

Then the crystal of F, WF, is the open set with positive orientation whose 
boundary is the radial plot of the function (W(F))*. 

A property of integrands and their crystals which is obvious from the first 
definition of WF is that the crystal of any integrand is convex (and hence 
WF E Irt+1(R'I+1)). To see other properties, we follow [Fu] and define three 
more operators, ƒ, A, and C, from integrands to integrands as follows: for 
every integrand F and every IT E G0(n + 1, n), we let 

I(F)(w) = \/F{TT) 

(I is the multiplicative inverse operator), 

A(F)(ir) = sup{F(*w)<*7T, w>: w E R3, |w|= 1} 

(so A = ƒ o W o I and W = I ° A ° I); we let C(F) be the integrand such 
that the radial plot of (C(F))* is the boundary of the convex hull of the 
radial plot of F*. 

One checks that C = W ° A, and for a given integrand F, if H is any 
integrand which satisfies W(H) = C(F), then H > A (F). From this, it 
follows that for any convex set K containing the origin in its interior, there is 
an integrand F such that the crystal of F is K; one such F is just A (k), where 
k is the integrand such that the radial plot of k* is the boundary of K. 

One property that some integrands have is convexity: an integrand F is 
convex (equivalently, semielliptic) if and only if C ° 1(F) = 1(F). Note that 
the integrand A (k) having the given convex set K as its crystal is in fact a 
convex integrand, and hence that for any integrand F, there is a unique 
convex integrand (namely, A ° W(F)) having the same crystal; this is also 
the smallest integrand having that crystal. The consequences of convexity will 
be discussed in the next section. 

(In the terminology of [R], (A ° W(F))*> extended to a function on all of 
Rn+l by positive homogeneity, is the support function of WF\ note that 
A ° W(F) = F if and only if F is a convex integrand, so convex integrands 
correspond to the support functions of their crystals.) 

Another property of the operator A is less immediately obvious but quite 
important. A few definitions are needed. For any h > 0, define the 
homothety 

ftfc:Jl"+l->J?-+l, tih(x) = hx. 
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For a given integrand F and h > 0, define 

Wh
F = to#{WF). 

If P G I/r+1(R'I"H) is an open set, positively oriented, having dP piecewise C1 

and M(3P) < oo, and if F and A are given, we define Ph G I„+iCR""1"1) by 

Ph = {JC + y: x G spt P,ƒ G spt W$ } 

with positive orientation. Then for almost all x such that dP(x) exists, we 
have 

lim /T'dis^jc, spt dPh) = A <> W(F)(dP(x)). 

A fundamental fact about the crystal of an integrand is the following 
classical theorem. It is was first stated without proof by G. Wulff [W], and 
successively more complete proofs were given by [Ln], [Le], [D], and [H], 
among others. A complete proof of the unoriented case in general dimensions 
appears in [Tl] and [T2]. 

THEOREM 1.1 (WULFF'S THEOREM). Suppose F is an {extended) integrand. 
Then F(dWF) < F(dT)for every T G ln+l(R

n+l) such that M(T) - M(WF), T 
is positively oriented \\ T\\ almost everywhere, and T is not WF or a translation 
ofWF. 

PROOF. We abbreviate WF by W. Let P in In+x(R
n+l) be an open set, 

positively oriented, with piecewise C1 boundary. Then, in the terminology 
defined above, 

F(dP)=fF(dP(x))d\\dP\\x 

>JA o W(F)(dP(x)) </||3P||JC= l i m ^ P * ) - M(P))/h. 

By the Brunn-Minkowski theorem [Fl, 3.2.41], 

M(P») > (M(P)l^l) + M ( ^ ) 1 / ( w + i y + 1 ; 

since M(Wh) = hn+lM(W) and M(W) = M(P), we get 

lim(M(PA) - M(P))/h >(n + l)M(H^). 

If P = W, then all the inequalities above are equalities. Therefore, running 
back up through the argument with W replacing P, we get (n + l)M(W) = 
F(dW), and hence F(dW) < F(3P). 

If T is as in the statement of the theorem and has multiplicity 1 \\T\\ almost 
everywhere, then T is in the AT-closure of currents such as P (see the 
terminology in the introduction) and if {Pi9 i = 1, 2 , . . . } is a sequence of 
such currents converging to some T as in the theorem then F(P,) converges to 
F(T). The condition of multiplicity 1 can be removed since the masses of 
currents and their boundaries scale under p,h by different powers of h. 

Uniqueness of the solution, compared to currents P with piecewise C1 

boundary as above, follows from the fact that at least one of the inequalities 
is strict if P is not W or a translation of it. Uniqueness in the larger class 
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follows from [T2] and is sufficiently involved that it will not be reproduced 
here. • 

REMARK. W is actually the unique solution even in a varifold sense to this 
problem of minimizing the surface integral subject to enclosing a given 
volume; see [T2]. 

Whether or not the crystal of F is centrally symmetric (i.e. Fis equivalent to an 
integrand on the unoriented Grassmannian G (n + 1, n))9 the inversion of 
the crystal is also important; this integral current is defined by taking the 
central inversion of the crystal and giving it a negative orientation. 

COROLLARY. The inversion of WF minimizes F among all integral currents T 
with M(JT) = M(WF) and negative orientation. 

2. Examples of Wulff construction. (1) Trivial example: F = 1. Then the 
crystal of F is the unit sphere. This F is called the area integrand, since F(5) 
is the «-dimensional area of S (counting multiplicity) for any S E In(R

n+l). 
(Actually, the example is not so trivial, in that the Brunn-Minkowski 
inequality, which is the heart of the proof of the Wulff construction, is a 
standard means of proving that the sphere has least area for the volume it 
surrounds.) 

(2) Typical example: Material with a lattice structure. Computing the energy 
holding a substance together by using only nearest neighbor bonds, and then 
obtaining a surface energy function by seeing what bonds are broken, one 
can arrive at an approximate surface tension function; there are also tech­
niques for direct measurement of the surface tension function (e.g. [AC]). 
Figure 3 (taken from [H]) shows a typical function; the crystals of these 
functions are polyhedral (see [H]). 

typical surface energy plot 

FIGURE 3 

(3) Unusual example: Catching fish using a sailboat. One can use the Wulff 
construction to decide the best path to sail when trawling for fish with a 
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sailboat. The speed a particular sailboat can sail is a function of the direction 
it is sailing, given a wind of constant velocity and otherwise constant 
conditions. The velocity profile of a typical sailboat is given in Figure 4. Let 
F: G0(2, l ) - » ü + u { o o } b e given by F(TT) * the time to sail one mile in 
direction m for each TT in G0(2, 1) (note that F = \/x> if v is the velocity 
function). The polar plot of P* and the result of the Wulff construction are 
given in Figure 5 (note that the coordinates appear to be rotated because one 
plots F*9 not F). The crystal of F is that vaguely fish-shaped object and is the 
region of given area such that the total time to sail around it is a minimum; 
equivalently, it is the shape of the largest area that can be surrounded in a 
fixed amount of time. Therefore if the fish are uniformly distributed, the most 
fish are surrounded in the given time by following this path. Note that the 
best tack and jibe angles appear automatically. The direction to sail is 
counterclockwise since the region surrounded is to have positive orientation; 
if you preferred to sail clockwise, you would use the inversion of the crystal 
as the best path. 

velocity profile of sailboat 
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3. Crystalline integrands. An integrand F is defined to be crystalline if and 
only if its crystal is polyhedral; thus in the examples of the previous section, 
surface tension functions for physical crystals are crystalline, but the time 
function for the sailboat is not. We study crystalline integrands for several 
reasons: those with appropriate symmetries provide a mathematical model for 
questions involving surface tensions of solids; the finiteness of the number of 
plane directions in the boundary of the crystal leads, under certain circum­
stances, to a similar finiteness and computability for solutions to the pre­
scribed boundary problem; and the interplay between elliptic integrands and 
crystalline integrands may yield new information on surfaces minimizing the 
integrals of elliptic integrands. In this section we consider that interplay and 
the extent to which the crystal of an integrand determines the solutions to the 
prescribed boundary problem for that integrand. 

Crystalline integrands can clearly be either convex or not. An integrand F 
is said to be strictly crystalline if F is crystalline and 

F(TT) > A o W(F)(ir) 

whenever IT E G0(3, 2) is not a tangent plane of the crystal of F. An 
illustration of a convex integrand and a strictly crystalline integrand having 
the same crystal is given in Figure 6. Elliptic integrands, on the other hand, 
are those which have uniformly convex crystals (the area integrand, for 
instance, is elliptic). Thus the set of elliptic integrands is disjoint from the set 
of crystalline integrands. 

strictly crystalline 

FIGURE 6 

THEOREM 3.1. If F is an elliptic integrand^ then in the C° topology F is in the 
closure of the class of crystalline integrands. If G is convex and crystalline^ then 
in the C° topology G is in the closure of the class of elliptic integrands. 
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PROOF. Approximate the crystal of F by convex polyhedral bodies; 
approximate the crystal of G by uniformly convex bodies. • 

This theorem implies in particular that any construction procedure for 
surfaces minimizing the integrals of crystalline integrands will produce ex­
plicit approximations to surfaces minimizing the integrals of elliptic 
integrands. Since such a construction procedure seems possible (see the last 
section), this is another major reason for studying crystalline integrands. 

Convexity of an integrand is important because it implies the lower 
semicontinuity of its integrals: if Sif i = 1, 2 , . . . , is a sequence of integral 
currents converging to S, then lim F(5,) > F(S'). Thus we have: 

THEOREM 3.2. If F is convex and B e In_x(R
n+l) with dB = 0, then there 

exists S in In(Rn+x) with dS = B such that ¥(S) < F(S") for any S' in 
In(Rn+l)withdS' = B. 

PROOF. The direct method in the calculus of variations-taking the limit of a 
(sub)sequence of currents whose integrals approach the infimum-produces a 
solution. • 

One example of non-lower-semicontinuity is provided by the sailboat. 
Suppose you want to go directly up-wind. If you just point the boat that way, 
it will take infinite time, since the speed you can sail in that direction is zero 
(in truth, it is negative). So you make one or more tacks. Neglecting the time 
it takes to tack, as we did implicitly before, if you take any finite number of 
tacks, and always sail along one of the sides of the best tack angle in between 
tacks, then all paths leaving from the starting point and arriving at the 
finishing point require the same length of time, which is also the least possible 
time (Theorem 4.1). But the limit (in the usual, namely integral current, sense) 
of a sequence of such paths can be a path heading straight up-wind, which is 
clearly not a path of the same or smaller time. (See Figure 7.) (One path 
which does have the same time, however, is the (rotated) graph of a Cantor 
type function!) To make the limit also be a solution, one would have to go to 
varifolds, rather than integral currents; with varifolds, the limiting "tangent 
plane" distribution of this sequence at each point of the limit line would be 
half 7rx and half ir2, where irx and TT2 form the best tack angle. 

F* either 

all F-minimal not F-minimal 

FIGURE 7 
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In R3
9 one cannot avoid the problem by choosing other minimizing 

sequences. Consider the problem of taking a single crystal of a substance, 
such as table salt, whose surface tension function F has a cube as its crystal 
and fixing a rectangular boundary B in a plane m parallel to one edge of the 
cube and at a 45° angle to the other two edges (this could be accomplished, 
say, by painting the whole crystal with an insoluble paint and then slicing off 
a chunk parallel to an edge of the crystal as above), then trying to find the 
interface of least energy having this boundary (say by putting the painted, 
sliced crystal in a saturated solution of the salt so that either depositing more 
mass on the crystal or dissolving mass does not change the total energy of the 
system). This problem has no solution in the usual (integral current) sense, if 
F is strictly crystalline: a minimizing sequence is shown in Figure 8, but there 
is a solution only in the varifold sense, and it is unique (Theorem 3.3 and 
Corollary to Theorem 4.1). Since this is a reasonable physical problem, and 
something must happen, our model must break down; what seems to happen 
in fact is that everything works fine until one reaches atomic scales, where the 
notion of tangent planes becomes untenable. 

/ \ \ 

minimizing sequence 

FIGURE 8 

It is thus useful to consider only convex integrands if possible. It is not 
difficult to see that to every integrand there corresponds a unique convex 
integrand with the same crystal (it is the smallest integrand having that 
crystal); Theorem 3.3 below says that we lose nothing by using the convex 
integrand instead of the usual one. Before proving this theorem, we introduce 
several terms we need here and throughout the rest of the paper, and we 
prove an approximation lemma. 
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Suppose F is a crystalline integrand on R3. We define the dual of the 
crystal as the polyhedral decomposition of the unit sphere 953(0, 1) formed 
by putting a vertex at every point which is a unit oriented normal to a face of 
the crystal and a 1-simplex (namely, the shortest path on the sphere connect­
ing them) between every pair of vertices which correspond to adjacent plane 
segments in the crystal. 

Given a plane m in GQ(3, 2) and h > 0, we define the crystal deformation to 
depth h of IT as follows: the crystal is translated behind the plane m ("behind" 
being defined with respect to the orientation of the plane) and is brought up 
until it penetrates the plane to a depth h; then the part of IT cut off by the 
crystal is replaced by the part of the crystal which penetrated through the 
plane. 

Crystal deformations of an integral current S around a point x where spt S 
has an oriented tangent plane S(x) are defined analogously, except that a 
homothety to shrink the crystal is also required so that the deformations only 
affect S near JC. (If S has higher multiplicity at JC, then clearly the replacement 
surface must be taken with the appropriate multipUcity so as to introduce no 
new boundary.) Note in particular that the crystal is brought up from under S 
so that the replacement has the same boundary as the part it replaces. 

For each normal vt to a crystal face, let h > 0 and let a^h) be the area of 
that face which is cut off by the crystal deformation of depth A, and let a(h) 
be the area in the plane of ir which was cut out; then define at (= a^ir)) as 
lim^^o a,(A)/a(/i). It is not hard to see that if v is the unit normal of ir, then 
v = Stf/t;,; this expression for v is defined to be the canonical expression for v 
and 2 a, fl/ the canonical expression for TT, where for each i TT, is normal to vt. (If 
only three planes meet at every corner of the crystal, then in fact the a/s are 
uniquely defined by v = Stf/t?, since one uses only vertices v, which are the 
vertices of the simplex in which v lies.) By the construction of the crystal, we 
have F(ir) > S^Ffo). (An alternative characterization of strictly crystalline 
is the requirement F(w) > 2rçF(u>) if m is not parallel to a face of the 
crystal.) 

APPROXIMATION LEMMA. Suppose F is crystalline and S E I2(R
3). Then 

given e>0andr}>0 there exist Tx and T2 in I2(R
3) such that dS * 3 (Tx + 

T2), M(TX) < 7}, f2(x) is polyhedral with plane segments parallel to faces of 
WF, and ¥{T^ < F(5) + e. 

PROOF. Apply crystal deformations to S around points JC such that S(x) is 
not parallel to a face of the crystal. • 

THEOREM 3.3. Suppose G is any crystalline integrand having the same crystal 
as the convex crystalline integrand F. Then if 5" E 72(^

3) minimizes the 
integral of G {among all integral currents with the same boundary), it minimizes 
the integral of F. Conversely, if S G I2(R

3) minimizes the integral of F, then 
the varifold V defined by replacing S(x) (wherever it is defined) by its canonical 
expression minimizes the integral of G in the family of all varifolds which are 
varifold limits of integral currents with boundary dS; V minimizes F uniquely in 
this family if F is strictly crystalline and S uniquely minimizes G. 

PROOF. Suppose S" minimizes the integral of G> and there exists S such that 
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F(5) < F(S") and 35 = 3S". Applying the approximation lemma above to S, 
with e = (F(S" - F(S)))/2 and i\ = e / m a x ^ ^ G, we obtain Tx and T2 such 
that 3(7, + r2) = 3 5 =35 'and 

G(r, + T2) < e/2 + G(r 2 ) = e/2 + F(2T2) < 6 + F(5) < F(5') < G(5'), 

a contradiction of the fact that 5 ' minimizes G. 
Conversely, suppose there exists a varifold V' in the family described in the 

theorem, which satisfies G(K') < G(V). Let 5 ' be the current limit of some 
sequence of currents giving V'. Then G(V') > F(V') > F(5') and G(V) = 
F(F) = F(5). Thus G(V') < G(V) implies F(5') < F(5), contradicting the 
F-minimality of 5. Uniqueness follows from the definition (or alternate 
characterization) of strictly crystalline. • 

4. Some basic F-minimal surfaces. The most basic surfaces used in studying 
crystalline problems are those of the following theorem, primarily because of 
their usefulness as barriers in the following sense. 

Suppose one knows that a given surface 5 is uniquely F-minimal for its 
boundary B. Then if 5 ' is another F-minimal surface (with boundary B'), and 
if (spt B n spt 5') u (spt B' n spt 5) = 0 , 5 ' cannot cross 5, as every subset 
of 5 is also uniquely F-minimal for its boundary. Thus a uniquely F-minimal 
surface is a barrier for other F-minimal surfaces. Crystalline integrands are 
particularly rich in simple barriers-one large class of such uniquely F-minimal 
surfaces is isolated below, and the other surfaces of the theorem become 
barriers also when the volume-maximizing condition of the next section is 
invoked. 

THEOREM 4.1. The oriented tangent cones to the boundary of the crystal and 
to its inversion are F- minimal. If F is crystalline, such tangent cones which have 
only one or two plane segments are uniquely F-minimal. 

PROOF. TO show that a tangent plane to the crystal is uniquely F-minimal it 
suffices to observe that there exists a uniformly convex integrand G such that 
G < F on all of <70(3, 2) and G = F precisely on the given crystal tangent 
plane direction. Then if S is the tangent plane, restricted to the unit disk, and 
S' is any other integral current with the same boundary as 5, F(S") > G(S") 
> G(5) = F(5). 

In the general case, we use the fact that the crystal has minimum surface 
integral for the volume enclosed. Consider first the case where F is crystalline. 
Let/7 be in spt dWF and again let S be the tangent cone at/?, restricted to the 
unit ball. Let 5 ' be any other current with the same boundary and suppose 
F(5) - F(S") = c > 0. If Jhe 3-dimensional current T in R3 bounded by 
5 ' — S were such that j*Td\\T\\ were nonnegative then we would have an 
immediate contradiction of Wulffs theorem, since if we replaced part of the 
crystal boundary in a neighborhood of p by an appropriate homothetic 
reduction and translation of S", we could obtain a surface surrounding the 
same or greater volume as the crystal and yet having a smaller surface 
integral. If the volume of T were negative, we could take a sequence of 
positive numbers rf, / = 1, 2 , . . . , converging to zero, and look at the 
sequence of currents C(A;) obtained by (1) replacing the boundary of the 
crystal in the ^-neighborhood of p by the translation iop of /i,.#S" (pr is the 
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homothety as defined in the Wulff construction) and then (2) expanding the 
current bounded by this new boundary by the homothety ft, where s = (1 -
vrfy1/3. One obtains a current C(rt) of the original mass. We observe that 

F(C(r,)) = s2(F(WF) - of) = (¥(WF) - crf)(l + 2vr?/3 + 0 (/?)). 

Thus F(C(r,)) — V(WF) must become positive for some i, a contradiction of 
the fact that the crystal is F-minimal for the volume it contains. 

If F is not crystalline, then the comparison surface S" as above must be 
patched into the crystal boundary. However, with a small enough radius r in 
the homothety one can make the extra integral small in comparison to 
(F(5) — F(S"))r2 and make the volume change also small; then the above 
argument gives the first part of the theorem. 

The same proof, with negative and positive interchanged throughout, shows 
that tangent cones to the inversion of the crystal are minimal. 

The proof of the final uniqueness part of the theorem is not difficult but is 
somewhat long. Let the tangent cone under consideration be composed of 
half planes with duals vx and v2. Let v3 and v4 be the duals to the "end 
planes" of the corresponding edge on the crystal (see Figure 9(a)). (If there 
are, say, k > 1 planes instead at, say, the v3 end, then v3 must be replaced by 
^3,iü3,i + * • • + b3kv3k in what follows for appropriate {b3J}.) 

FIGURE 9 

Fix a boundary B as in Figure 9(b); it is sufficient to show that the tangent 
cone, restricted to the convex hull of this boundary, is uniquely F-minimal. 
This boundary was chosen so that it is spanned not only by oriented triangles 
with normals vx and v2 but also by oriented triangles with normals v3 and v4. 
Let the areas of these triangles be bu b2, b3, and 1 respectively. Since the first 
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pair of triangles minus the second pair form a cycle, bxvx + b2v2 = b3v3 + i?4, 
but since the plane segments with normals v3 and v4 do not meet in the 
crystal, 

bxF*(vx) + b2F*{p2) - b3F*(v3) + F*(v4) - A 

for some A > 0. 
If S is any polyhedral surface having this boundary, let its plane segments 

have normals vï9...9vH and corresponding areas ax,..., an. For each /, 
write €> * rfjüj -h rf2^2 + ^4Ü4- If ^4 > 0, set clV * ^ for j * 1, 2, 4 and 
cl>3 * 0; otherwise, set cM = dx + rf46„ c/>2 = ^ + ^2> c/,3 x ~ 4̂*3> a n d 
cl>4 * 0 and observe that we still have vt =*= ^JC^VJ. Let cj = S/tf/^y for 
y * 1 , . . . , 4 and note that c4 > max{c4l} > 0 unless S itself is the restricted 
tangent cone. Since the restricted tangent cone minus S is a cycle again, we 
have 

n 4 

0 = bxvx + b2v2 - 2 fl/ty = *i^i + b2v2 - 2 O'ty 
i - i y - i 

so that ft, — c', = c4/?„ fc2 "" c2 = c4*2» anc* 3̂ = ^4*3-
Because all tangent cones to the crystal are F-minimal, 

F*(v.) > £ c,j,F*(vj) 

for each i = 1 , . . . , n (to see this, rearrange so that all coefficients on each 
side are nonnegative), and thus 

F(5) = £ a,F*(c,) 

> £ cjF*(vj) = £ , ƒ > , ) + b2F*(v2) + Ac',. 

This shows that among polyhedral surfaces, the restricted tangent cone is 
uniquely F-minimal. Assume there exists an integral current S with 35 * B 
and F(5) =•= ftjF^t),) + ^ ^ O ^ w c ^ r s t n o t e * a t the proof of minimality 
shows that none of 5 can lie above the tangent cone. Then we deform S by a 
crystal deformation involving the corner whose planes have normals vx, v2, 
and v4 and note that S not equal to the tangent cone implies that for some 
such deformation (which doesn't move the boundary), there is an open region 
of positive area a on the v4 plane; since this cone is F-minimal, the 
deformation cannot have increased the integral. We now take a sequence of 
polyhedral approximations to this deformed S as in the Approximation 
Lemma of §3, and which each include a segment having area at least 3a/4 
and normal v4. By the above, for small enough e9 each polyhedral approxi­
mation has extra integral (compared to the tangent cone) of at least Aa/2, 
and hence for small enough r/, S has extra integral at least Aa/4, which 
contradicts the assumption that S is F-minimal. • 

5. Hie volume maximizing condition. Situations like that in the example of 
§3, where the graphs of even Cantor-type functions can be F-minimal for a 
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given boundary, illustrate that surfaces minimizing the integrals of nonelliptic 
integrands can be quite irregular without some further selection. The situation 
becomes considerably simplified if, in the class of all integral currents 
minimizing the integral of F, subject to having a given boundary, one looks 
only at those satisfying a local volume maximizing principle. One such 
condition is that of obeying local crystal corner barriers: 

If at some point x in spt S there exists a neighborhood N of 
x such that a tangent cone to a corner of the crystal can be 
pushed up through S restricted to N as in a crystal defor­
mation without moving Bndry(iV n spt S) then S does not 
obey local crystal corner barriers. If for every point x in S 
there is no such neighborhood, then S does obey local crystal 
corner barriers. 

THEOREM 5.1. Let B in IX(R3) have dB = 0 and let F be a convex crystalline 
integrand. Then there exists S in I2(R

3) such that dS = B9 S is F-minimal 
among all integral currents with boundary B, and S obeys local crystal corner 
barriers. Furthermore, such an S has all its tangent planes normal to the 
1-skeleton of the dual of the crystal. 

PROOF. Existence of such a locally volume maximizing solution follows 
from the compactness of the set of surfaces which minimize F and the 
F-minimality of tangent cones to corners of the crystal of F. If for some x, 
H?(x) is not normal to some element of the dual, then the canonical expression 
for l$(x) produces a crystal corner whose tangent cone can be pushed up 
through S in a small neighborhood of x. • 

COROLLARY. All tangent cones to the crystal of F are barriers for F-minimal 
surfaces which obey local crystal corner barriers. 

Imposition of this volume maximizing criterion does not really decrease the 
amount of information available about general solutions: once one has 
volume maximizing solutions, pushing the corners back in again will give all 
the other solutions. In fact, one could just as easily go to the opposite extreme 
and ask for "volume minimizing" solutions, using the inversion of the crystal 
rather than the crystal. Either condition would give the finiteness of the next 
section. And this selection of a volume maximizing solution seems to make 
sense in the physical model that crystalline integrands are designed to 
describe, at least whenever the interface under consideration is between two 
different materials (or two different lattice orientations), as opposed to a 
lattice translation [ÇJ. 

6. Finiteness. One can reduce the set of possible tangent planes of an 
F-minimal surface to a finite set by putting conditions on the support of the 
boundary. The conclusions of the following theorem are not nearly the best 
possible, but their proof indicates with a minimum of effort the basic reason 
for that finiteness. Note that the set of boundaries satisfying the theorem is 
C°-dense in the space of all boundaries. 

THEOREM 6.1. Suppose F is convex and crystalline. If B G IX(R3) has dB = 0 
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and spt B piecewise linear, with each linear segment parallel to an edge of the 
crystal, and if S E I2(R

3) has dS = B, is (locally) F-minimal, and obeys local 
crystal corner barriers, then \\S\\ almost all points in spt S have a tangent plane 
in the finite set P consisting of those planes which are spanned by lines parallel 
to edges of the crystal. 

PROOF. Suppose F, S and P arejis in the statement of the theorem, and at 
p G spt S, S(p) is not in P. Then S(p) is normal to the 1-skeleton of the dual 
of the crystal and thus has canonical expression axmx + a1

fn1 for some planes 
a-, and TT2 which are parallel to adjacent faces of the crystal. Without loss of 
generality we may assume that S(p) = R2 X {0}, with its usual orientation, 
that/? = 0, and that the common line of <nx and m2 (which is of course parallel 
to an edge of the crystal) is Rl X {(0, 0)}. Since S(p) is not in P, no 
boundary segment can He in Rl X [- e, e] X {0} for some e > 0. We may use 
the fact that we only ask for almost all points in the theorem to assume/? and 
c are such that if N = Rl X [~e, e] X [~e2, e2], then N n spt B is empty; 
we may also assume that e is less than half the altitude of the triangle with 
base 1 and sides ax and a2. If spt S n N has more than one connected 
component, we consider only the connected component of the origin in what 
follows. The boundary of spt S n N, except for the parts in Rl X { — e, e} X 
il1, now is seen to lie on the planes parallel to the (xx, x2) plane and at a 
distance e2 above it and below it. Suppose it is entirely above the (xx, x2) 
plane; then the tangent cone to the crystal which involves just the planes mx 

and ir2 can be pushed up through S near/7 without moving spt S n Bndry N 
or spt B; since this tangent cone is uniquely F-minimal, S could not have 
been F-minimal, a contradiction. Similarly, if this part of the boundary of 
spt S n N lay entirely below the (xx, x2) plane, the tangent cone to the 
inversion of the crystal involving just the planes TTX and m2 would provide a 
contradiction. Finally, we observe that for xx > 0, the part of the boundary 
not off to the sides must be either entirely above the (xx, x2) plane or entirely 
below it, since there is no boundary between - e 2 and +e2; the same is true 
for JC, < 0. Therefore from one end or the other a tangent cone to a corner of 
the crystal can be pushed up under S without moving spt S n Bndry N or B, 
contradicting the volume^maximizing property of S. Thus we conclude that 
the set of points/? where S(p) is not in P must have two-dimensional measure 
0. D 

One would hope that this finiteness would imply that some finite explicit 
procedure for the computation of F-minimal surfaces under these conditions 
would be possible. This is in fact the case and such a procedure is outlined in 
the next section. Before we leave this section, however, let us investigate the 
conditions under which the set P of planes in the theorem above is just the set 
of directions of the faces of the crystal itself, and hence under which the 
convexity condition on F can be removed without having to go to varifold 
solutions. 

PROPOSITION 6.2. Suppose that G is crystalline and F is the convex integrand 
with the same crystal as F. Suppose that every face of this crystal has an even 
number of edges and that for every face, opposite edges are always parallel. 
Then: 
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(1) The plane determined by lines through the origin parallel to any two edges 
of the crystal is parallel to two faces of the crystal (of opposite orientation). 

(2) Under the conditions of the preceding theorem^ S is in fact G-minimaL 

PROOF. (1) Given a line through the origin parallel to an edge of the crystal, 
the unit oriented normals to the faces which contain that edge all lie in the 
great circle whose plane is perpendicular to that line. So for the given two, 
their corresponding great circles intersect twice. The points of intersection 
must also be normals to faces of the crystal; if they were not, the closest 
normals to each side of an intersection point would represent four faces of the 
crystal, opposite pairs of which have to intersect along edges parallel to those 
given lines, and the crystal being convex prohibits this. 

(2) By the previous theorem, the set of possible tangent planes must be 
(except at a set of measure zero) those spanned by edges of the crystal, which 
by (1) above are simply the planes parallel to faces of the crystal. By Theorem 
3.3, if S is F-minimal, then the varifold based on S is G-minimal; but this 
varifold has its tangent plane distribution agreeing with the tangent planes of 
S itself and hence S is G-minimal. • 

7. Computation of F-minimal surfaces. The finite number of possible 
tangent planes gives hope that F-minimal surfaces which locally maximize 
volume may be computable under appropriate boundary conditions. An 
explicit finite procedure for producing at least one integral current which at 
least locally minimizes F now exists if the support of the boundary B lies on 
the boundary of a convex set (and is piecewise linear with each piece being 
parallel to an edge of the crystal). 

This procedure has three stages, which can be summarized as follows: 
(1) Cut in, with cones derived from the crystal, at the part of the boundary 

of the negatively oriented convex set which has boundary B. A surface which 
obeys crystal corner barriers is produced. 

(2) Remove nonminimal intersections of planes by inserting segments of 
the crystal appropriately, and (if necessary) separate some plane segments 
into two or more segments-with appropriate segments of the crystal as 
patches between them-according to a fairly simple criterion. 

(3) Vary the position of each plane segment whose position is not fixed 
from both sides by local crystal barriers (this includes varying planes off the 
boundary line segments, with appropriate patching from the crystal) to find 
the best overall position. (This amounts to solving a particular system of 
linear equalities and inequalities.) 

The resulting surface satisfies five local properties which can then be shown 
to imply that the surface is locally F-minimal. A complete description of the 
procedure and the proof that it produces a surface which is locally F-minimal 
will be published later. 

Another F-minimal surface can be obtained by working with the other half 
of the boundary of the convex set; it will produce a "locally volume 
minimizing" surface of the wrong orientation which can be converted to a 
locally volume maximizing surface of the right orientation simply by chang­
ing orientation and then applying local corner barriers. If this second surface 
agrees with the surface obtained by the first procedure, then in fact all 
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F-minimal surfaces can be determined from it. 
An undergraduate student at Rutgers University is currently attempting to 

put this procedure on a computer. Some examples of F-minimal surfaces 
obtained by the procedure for various F's are shown in Figures 10 and 11. 

crystal 

FIGURE 11 

Several comments should be made about the significance of this procedure. 
First of all, it explicitly produces exact solutions to a large class of problems 



588 J. E. TAYLOR 

which are reasonable mathematical models for physical phenomena involving 
surface tension. (Note that the finiteness of the number of plane segments 
means that atomic dimensions can easily be avoided, making surface tension 
a meaningful concept.) Secondly, since any integrand in R3 (in particular, 
any elliptic integrand) can be approximated by crystalline integrands 
(Theorem 3.1), the procedure produces a sequence of explicit approximations 
to surfaces minimizing the integral of the original integrand. (Approximations 
for area minimizing surfaces with boundaries on convex sets when there is 
known to be a unique solution have also been found by H. Parks, but by an 
entirely different method [P].) Thus, in particular, we now know that extreme 
locally area-minimizing surfaces can be approximated by surfaces obtained in 
this rather straightforward three-stage procedure. 

A major objective is to extend the procedure (and its proof) to higher 
dimensions (most of the material of this article except for the construction 
fairly easily extends already). It is hoped that the construction, together with 
the approximating procedure, will give new information on the structure as 
well as the accessibility of surfaces minimizing any codimension one 
integrand. 
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