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0. Introduction. The topic of this lecture is the well-known question: Letting 
Hol^) denote the algebra of functions holomorphic in a neighborhood ofX, for 
which relatively compact domains D in Cn does the injection 

Hol(5)^Hol (Z>)n C(D) 

have uniformly dense range! In terms of uniform algebras, it becomes_a 
question of necessary and sufficient conditions for thejuniform algebra H(D) 
of uniform limits o£ functions holomorphic near D Jo coincide with the 
uniform algebra A(D) of all continuous functions on D which are holomor­
phic on D. 

A necessary condition obviously is that the respective collections of com­
plex homomorphisms, A//(Z>) and AA(D), of these algebras coincide. Since 
Arens [1] demonstrated for the case n = 1 that LA(D) *= D (i.e. every 
complex homomorphism of A(D) arises from point evaluation at points of 
D), and again in the case n = 1 Runge's theorem implies AH(D) = D, the 
necessary condition always holds on domains in the complex plane. Neverthe­
less, there existjelatively compact connected domains D in the complex plane 
for which H(D) ^ A(D). Several such examples are developed in Gamelin's 
treatise [17]. _Failure of approximation in the plane is_a local boundary 
property of Z>, since H{D) = AJ^D), if for every z G D there is a closed 
neighborhood Vz on which A(D n Vz) = H(D n Vg). See [17]. In 1967, 
Vitushkin [32] formulated a necessary and sufficient condition for approxima­
tion in terms of continuous analytic capacity; roughly speaking, approxima­
tion takes place if the boundary of D is "not too large." 

Following thisjone-dimensional motivation, it has frequently been conjec­
tured that Hol(D) ^ Hol(Z)) n C(D) has dense range on any relatively 
compact domain of holomorphy D with "reasonable" boundary. Recent 
examples, which are described below, show the conjecture to be false even in 
the case dD is C(oo). These counterexamples are established by showing the 
failure of the necessary condition-viz., AH(D)=£AA(D\ due to analytic 
continuation beyond^D of functions in H(D) not possible to the same extent 
for functions in A(D). When D is holomorphically convex-i.e. &H(D) = D, 
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simultaneous analytic continuation is not possible beyond D for all functions 
in H(D). Without the condition of boundary smoothness, examples in which 
A//(D) = àA(D), but H(D) =£ A(D) have been known for some time. The 
latter type of counterexample does not simply perpetuate the one-dimensional 
type abnormalities, for the boundaries in these examples may fail to be 
smooth on a very small set-even a point; difficulties arise through failure of 
the segment property at certain boundary points. 

DEFINITION 1. D has_the segment property at z E3Z>, if there exists a 
neighborhood W of z in D and w EC such that for all 0 < t < 1, W + tw Q 
D. 

Based on these vague comments, there is a form in which the original 
conjecture may survive. 

BASIC CONJECTURE. If D is a domain in Cn whose closure is holomorphically 
convex and which satisfies the segment property at each boundary point, then 
H(D) = A(D). 

The underlying purpose of this exposition is to fortify the reasonableness of 
the Basic Conjecture. The selection of topics which occurs in the process is 
not intended to slight equally valuable, but unmentioned, contributions to the 
subject of holomorphic approximation. 

OUTLINE. For insight into the difficulties which obstruct approximation, a 
few provocative counterexamples are discussed in §1. In §2, the significance 
of the segment property in determining AA(D) and in providing an alterna­
tive description of A (D) on a holomorphically convex set D is considered. §3 
describes a general method for handling approximation on strongly pseudo-
convex domains and thereby sets the stage for dealing with domains with less 
amenable boundaries. The present status of the Basic Conjecture with respect 
to weakly pseudoconvex domains is the emphasis of §4. Finally, in §5, an 
attempt is made to formulate the question of approximation more generally 
and through this formulation to generate problems which remain unanswered 
even in the specific cases previously considered. 

1. Counterexamples. Let 0, « {(z, w): \z\ < \w\ < 1} C C2. Even though 
Qi is a domain of holomorphy, the interior of the intersection of the domains 
of holomorphy containing Q, (i.e., the Nebenhülle n(Üx) of Q,) is the bi-disc 
D2 = {(z, w): \z\ < 1, \w\ < 1}. Indeed, Q, is not holomorphically convex. Q, 
is the most elementary example of a domain of holomorphy on the closure of 
which approximation fails. The function ƒ defined by /(z , w) = z2/w extends 
continuously to the boundary singularity (0, J)) but does not extend holomor­
phically to D2 as do all functions in #(S2,). This example obscures the 
respective roles of holomorphic convexity and boundary smoothness. Actu­
ally, it is not disparity between the homomorphisms of the respective alge­
bras, but rather holomorphic extension of functions in H(tix) to a neighbor­
hood of the boundary singularity (0, 0), which accounts for the failure of 
approximation. However, this does underline the fact that in higher dimen­
sions smoothness can fail on a "not too large" boundary without approxima­
tion occurring. 

Since the main thrust of these remarks addresses domains with reasonable 
boundary, suffice it to note that examples provided by E. Kallin [23], 
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Senichkin [27] and Sibony [30], show the existence of_open relatively compact 
subsets D of C" with the properties (i) AJ7(Z>) = D = AA(D); (ii) d0H£D) 
= dD =doA(Z)), where "3 0 " denotes "the Silov boundary of'; (iii) A(D) ^ 
H(D); but (iv) D fails to have the segment property somewhere at the 
boundary. These domains may even be connected and polynomially convex 
in contrast withjhe celebrated theorem of Mergelyan which asserts that every 
function in A(D) is a uniform limit of polynomials, if D C C and if D is 
polynomially convex. Also, one of Senichkin's examples has the property that 
the peak points of both algebras are the same although d0H(D) ^ 3Î>. 

On the other hand, under the assumption that D is a domain of holo-
morphy with smooth boundary, counterexamples to approximation still ap­
peared unlikely until 1975 when Diederich and Fornaess [12] constructed a 
relatively compact domain of holomorphy B2 in C" with C°°-boundary for 
which H(22) =£ A(ü2)- Approximation on fi2 fails for the_most elementary 
reason: failure to satisfy the necessary condition that A//(B2) = A^4(fi2)-

The domain 22 constructed by Diederich and Fornaess is not holomorphi-
cally convex, has a nontrivial Nebenhülle and, a fortiori, is not strongly 
pseudoconvex; i.e. there does not exist a smooth function p in a neighbor­
hood U of 3S22 with the properties: 

(a)fl2n U={zE U:f>(z)<0}; 
(b)rfp(z)^0forallz E U; 
(c) the Levi form of p at any point z E 3 fl2 is positive definite on U. 
(In fact, they show that no such exhaustion function p exists which is 

plurisubharmonic in U) However, there is [9] a strictly plurisubharmonic 
exhaustion function which is Holder continuous on the closure of any weakly 
pseudoconvex domain. 

A brief description of the Diederich and Fornaess example follows. Let X: 
R-* R+ u {0} be a "sufficiently" convex, smooth function, vanishing on the 
nonpositive reals and strictly positive on the positive reals. For large R > 1, 
define pR by 

pR(z, w) - \w 4- exp(/ In zl)\2 - 1 + X(|z|-2 - 1) + X(|z|2 - R2). 

Then let 

S22 - {(z, w) E (C - {0}) X C: pR(z, w) < 0}. 

The Levi-form of pR vanishes precisely on the annulus AR = {(z, w): 1 < \z\ 
< R and w = 0}. Furthermore, fl2 is weakly pseudoconvex, which is to assert 
that the Levi-form of pR is nonnegative on complex tangent vectors to 3fi2: 
i.e. 

2 T ^ ( O H ^ > 0 , if 2 ^ ( m - O f o r a l U e S Ö * . 
ij tefcj i dzi 

Strongly pseudoconvex boundary points-boundary points where the Levi 
form is positive-are peak points for the continuous boundary value algebra 
y4(fl2). Furthermore, Hakim and_ Sibony [18] show that for any weakly 
pseudoconvex domain Z), doA(D) is the closure of the set of strongly 
pseudoconvex boundary points. By applying Hartog's theorem one can see 
that every holomorphic function in S22 continues holomorphically to 
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Ö2 = B2U {(z, w): en < \z\ < e2" and \w\ < 2}. 

Since §22 contains peak points of A (S22) in a neighborhood of which functions 
in //(S22) can be continued, the two uniform algebras must be distinct. 

Thus the possibility of holomorphic approximation on a domain D with 
nice boundary seems to be related to holomorphic convexity or to the 
existence of â  plurisubharmonic defining function for D with special proper­
ties beyond D. 

2. Homomorphism spaces. Holomorphically convex compact sets K in Cn 

can be characterized as the intersection of the natural projections into Cn of 
the envelopes of holomorphy of a fundamental system of open neighborhoods 
of K. (See Birtel [6] or, for a more detailed presentation of the proof, Birtel 
[4].) Furthermore, the interior of a holomorphically convex set, and, a fortiori, 
of a holomorphic set, is a domain of holomorphy [4]. In the presence of 
holomorphic convexity it is natural to seek conditions to guarantee that the 
homomorphism space of the continuous boundary value algebra is no larger. 
This was verified by Hakim and Sibony [18] for a domain D C C" such that 
(i) D is weakly pseudoconvex, (ii) D has the segment property at each z E dD, 
and (iii) D is a compact holomorphic set (i.e. an intersection of_ Stem 
neighborhoods). If ( i^ i i ) and (iii) hold for D, then AH(D) = AA(D) = D 
and d0H(D) = d0A(D), which is the closure of the strongly pseudoconvex 
points in the case dD is C(2). More recently, Beatrous [2] has extended these 
results to holomorphically convex sets X which may fail to have the segment 
property on a "sufficiently small" subset of the boundary. Specifically he 
shows: 

THEOREM 2.1. Let A and B be uniform algebras on X = AA with A Q B. 
Suppose N Q X is closed and B consists of functions which are uniform limits of 
continuous functions on X, locally approximable on X \N by restrictions of 
functions in A. Under these conditions, if AB ^ X, then dQB(ABXXy C N, where 
B(AB\xy *s the algebra of uniform limits on (AB \ X)~ of restrictions of 
functions in B. In particular, if ABN C X, then AB = X. 

An immediately applicable situation arises when D is holomorphically 
convex, N is the set_ of boundary points of D at which the segment property 
fails and A = H(D). Since at each p e 3D jat which the segment property 
holds_there exists a neighborhood U of p in D such that the restrictions map 
Hol(Z)) -» A (D)Ü has dense range, more generally N may be regarded as any 
closed subset of dD which contains the set of points in dD at which local 
approximation by functions in Hol(Z>) fails to occur. In the examples of 
Sibony [30] and Kallin [23], cited earlier, the conditions of Theorem 2.1 are 
fulfilled; for in each of these examples, AA(D)N C D. 

PROOF OF THEOREM 2.1. (BEATROUS). Define m\ AB-+X by ir(<t>) = <j>\A 
and for ƒ E C(X), let ƒ = ƒ ° IT. If the theorem is false, there exists x0 G X \ 
N which is a strong boundary point for the uniform algebra BAB^X. There is a 
neighborhood U of x0 such that, if ƒ is continuous on AB \ TT~\N) and 
locally approximable there by functions in B and if f\X = 0, then f\U = 0. 
Now any h E B can be realized as the limit of functions hn continuous on X 
and locally approximable on X \ N by functions in A. Thus hn-+h uniformly 
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on Ai?. With hn denoting the extension of hn to Ai?, hn = hn on U, since 
hn = hn on X. Therefore, h = A on [/ for ail h EL B. This implies 7r| C/ is 
one-to-one so (/ C I . But [/ is a neighborhood of x0 E (Ai? \X)~, which is 
a contradiction. 

Encouragingly, the Basic Conjecture is sustained by these considerations. 
At least holomorphic approximation cannot fail due to the presence of new 
complex homomorphisms, whenever the closure of the domain is holomorphi-
cally convex and satisfies the segment property at each boundary point. 

3. Strongly pseudoconvex domains. All is well for these domains. Strongly 
pseudoconvex domains with smooth boundary have closures which are holo­
morphic sets, hence are holomorphically convex, and satisfy the segment 
property at each boundary point. For D strongly pseudoconvex with various 
assumptions about boundary smoothness, the result that H{D) = A(D) 
appears in Kerzmann [24], Henkin [20], Lieb [25] and Fornaess [15]. 

For products of strongly pseudoconvex domains with smooth boundaries, 
the theorem has been established by Weinstock [33] and Sibony [28]. All of 
these results can be subsumed under a general procedure which may ulti­
mately have a broader application. This general approach is described below. 

The fundamental observation first suggested to the author by Reese Harvey 
is 

THE BASIC LEMMA. IF, ^whenever /A is a measure supported by D which 
annihilates functions in H(D), there exists a current o)_of bi-degree (n, n — 1) 
with measure coefficients_supported_ in D such that 3co = /A in the sense of 
distributions; THEN H(D) = A (D), provided that D has the segment property 
at each boundary point. 

Note. In the complex plane the current <o of the above lemma is given by 
(1/7T)/2(Z) dz, where /2 is the Cauchy transform of the orthogonal measure /x. 

OUTLINE OF THE PROOF. Let </> be a partition of unity subordinate to a cover 
of D. Then 3(<£xo) =3<f)Aw + </>3<o j s a measure. If spt(</>) C D, then 
3 (<t>u)(g) = 4*>(3g) = 0 for all g E A(D). If spt(</>) n 3D ^ 0 , then it may be 
assumed that the cover was so chosen that spt(<p>) C U and for some co EC" 
and for 0 < / < 1, z + /<o G D for all z E D n U. Let (4x0), denote the push 
forward of </><o by this affine^ map. Then (̂ KO)/ -» </><o and 3 (<j>oo)t(_g) = 
(4><o),(3g) = 0 f01^ all g E_A{D). Therefore âco =/x annihilates A(D) or, 
equivalent^, H(D) = A(D). 

The simplest circumstance in which the hypotheses of the^Basic Lemma are 
verifiable is when D is strongly pseudoconvex. Then D = n ? , A w i ^ 
Q*+i CCÖjt and Qk a domain of holomorphy for k = 1, 2 , . . . . By well-
known results of Dieudonné and Schwartz for each /A E Hol(Q^) there exists 
an (n9 n — 1) current Xk with d\k = ft and Xk compactly supported in tik. In 
addition, the inhomogeneous Cauchy-Riemann equation can be solved 
boundedly on ük. So for each closed C(oo) differential form a of bi-degree 
(0, l ) o n ^ , 

l\(«)l - |A*(V)I - | 3 \ ( / ) | < II/x|| ll/lk < IIMIIQ|M|04. 
By Hahn-Banach extend Xk with no greater norm to all C(oo) forms of 
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bi-degree (0, 1) to get a current o)k with measure coefficients satisfying: (i) 
do)k = /i, (ii) spt(ak) C Qk and \\uk\\ < Q . Since the fundamental system 
{£2*} of neighborhoods can be chosen as small perturbations of Z), it is 
possible to obtain a constant C such that Ck < C for all k. The proof is 
designed to apply whenever this condition holds. Then by the Bourbaki-
Alaoglu theorem there exists a current co in the weak-star closure of {cok} 
which fulfills the requirements of the Basic Lemma. 

This argument can be simplified by using the explicit nature of the kernel 
which solves the inhomogeneous Cauchy-Riemann equation; the slightly 
more complicated formulation here avoids any specific choice of the kernel 
and hence could conceivably apply in more general situations. 

A presumably weaker version of the Basic Lemma suffices to manufacture 
a current œ with the desired properties. If /A is orthogonal to Hol(Z)) and 
spt(/i) C D, then the existence of a flat current A of bi-degree («, n - 1) with 
spt(A) C D, 9 A « fx and flat norm F^(A) < oo implies the existence of a 
current co of finite mass (measure coefficients) with the desired properties. For 
the definition of flat current, see Fédérer [14]. The characterization of flat 
currents [14, p. 375] gives the_existence of £"-summable currents Xd and v8 

supported in Dô = {z: dist(z, D) < 5} withjhe properties that 
(i) A = Xs + dvô, spt(A5) Ç Ds, spt(p5) C D6, 
(ii) f(\\\s\\ + \W\) d& <F5(A) +8. 

But /x = 3A = dA = d\8 + ddv8 = d\8 = 3AÔ. So {\: 8 > 0} is a collection 
of uniformly bounded £"-summable (n, n - 1) normal currents with spt(X5) 
Ç D8. Without loss of generality, assume Xs converges to X by using the 
compactness theorem for normal_currents [14, p. 414]. Then X is £"-summable 
(n, n - 1) current supported in D and 3 A = JU,. Whether this observation will 
ultimately be useful is still unanswered. The proposition does seem to bear 
relation to the work of Cole and Range [8]. 

The crucial result which makes application of the Basic Lemma possible is 
the availability of a uniformly bounded family of solutions to the inhomoge­
neous Cauchy-Riemann equations on a fundamental system of neigh­
borhoods of the closure of the given domain. In all other proofs of approxi­
mation similar uniform bounds are critical to the success of the 
demonstrations. Of course, control of the constants Ck depends upon detailed 
information about the kernel which is used to construct bounded solutions to 
the inhomogeneous Cauchy-Riemann equation. 

Finally, Siu and Range [26] exhibit kernels which do the job and provide 
the ingredients for proving holomorphic approximation on domains with 
piecewise smooth boundaries which are relatively compact normal intersec­
tions of strongly pseudoconvex domains. 

4. Weakly pseudoconvex domains. On a strongly pseudoconvex domain the 
existence of a smooth strictly plurisubharmonic defining function provides 
the means for constructing kernels to obtain uniformly bounded solutions of 
the inhomogeneous Cauchy-Riemann equations which are uniformly boun­
ded on a fundamental system of strongly pseudoconvex neighborhoods gotten 
by small perturbations of the boundary of the original domain. Unlike 
strongly pseudoconvex domains, weakly pseudoconvex domains with smooth 
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boundary do not, in general, have "nice" defining functions, are not always 
intersections of strongly pseudoconvex domains and, even when they are, do 
not seem to allow for control of the uniform bounds for solutions of the 
inhomogeneous Cauchy-Riemann equations near their closures. Therefore, 
the ingredients for application of the Basic Lemma in settling the question of 
holomorphic approximation are not available, even if the closure of the 
domain is known to be a holomorphic set. 

In the weakly pseudoconvex case, the approach has been to apply what is 
known for strongly pseudoconvex domains near the strongly pseudoconvex 
boundary points and to assume certain geometric conditions near the weakly 
pseudoconvex points so that holomorphic approximation holds near each of 
the two types of boundary points, and then to patch approximates in order to 
obtain a global approximation. 

LEMMA_4.1. Let D be a relatively compact_domain in Cn with C(4) boundary. 
Suppose D is holomorphically convex. Let s(D) be the set of strongly pseudocon­
vex boundary points and let Nl9 N2 be open sets in C^_with Nx c C N2 and 
N2(~)dD C C s(D). Then there is a neighborhood D of D and a constant k with 
the property: 

If D' D D is a sufficiently small C(4) perturbation of D and if a is a d-closed 
C(oo) differential form o£bi-degree (0,1) with spt(a) CNl9 then there is a C(oo) 

function u on D' (J (D \ N2) with du = a on D'9 du = 0 on D \ N2, and 
\\U\\D < *\\"\\D-

A version of this lemma appears in [35]; the above formulation for 
holomorphically convex sets is due to Beatrous [2]. 

Lemma 4.1 localizes those properties of strongly pseudoconvex domains 
which are most relevant for approximation; hence, not unexpectedly, Bea­
trous can show 

THEOREM 4.2. Let D satisfy the conditions of Lemma 4.1 and let E = dD \ 
s(D). Then a function ƒ G A(D) is in H(D) if_and only if there exists a 
neighborhood £2 of E such thatf\^n^ is in H(ti n D). 

PROOF. Let AT,_be a small neighborhood of_Z)\Q and let N2 be a 
neighborhood of Nx such that N2ndD c C s(D). Cover dD \ ÏÏ by small 
balls 2?„ B2, ..., Br Ç Nx with centers ql9 q29..., qr G (dD \ ÏÏ). Let Vj be 
the outward unit normal to dD at qj and let Jff (z) = f\z — 8vj). For 
sufficiently small _8 > 0, ff is holomorphic near D n By Let D be the 
neighborhood of D appearing in the lemma and set Br+X = D \ Nx. Then 
Bl9..., Br9 Br+X9 Q is an open cover for D. Let {$„ . . . , Ôr, ®r+\9 %} be a 
partition of unity subordinate to this cover of D. For e > 0 choose 8 such that 
||Jf - f\\B,nD < c for / = 1, 2 , . . . , r; choose a neighborhood B0 of £2 n D 
and a function f0 G Hol(50)_withJ| f0 - fWônâ < *• F<>r i = 0, 1 , . . . , r 
choose neighborhoods Bt of Bt n D such that f is holomorphic on /?, and 
U -fiUnij < 2e for 0 < i9j < r + l with Ér+l = Br+l and fr+l = ƒ. Let 
D' be a small C(4) perturbation of D with D' D D \j (dD n N2)~ and 
sufficiently small so as not to affect the constant k appearing in the lemma. 

Define gi = Tjt^f - fj) on Bt and observe that JJ gi\\é. < 2e9 gi - gj =J 
- fj on Bg n Bj and g0|i?0 \ TV, = 0. Since 3g, = dgj on Bi n $J9 a = dgj 
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defines a C00 form of bi-degree (0, 1) on WitoB, 2 £>'• By the lemma, there 
exists smooth u on D' \j (D \ N2) such that du = a on D\ du = 0 on D \ N2 

and IMI/j < £||<*llz)- But Ilall5 < Ce where C depends only on the partition 
of unity {$,.}. Letting Dt = D' \j (D \ N2), ht = gj — u is holomorphic on 
5, n D and 

ƒ/ - ht = ƒ/ - & + u=fj-gj + u=fj- hj oni, n 4 n A, 
S0X = ƒ ~ ^ defines a holomorphic function on Z>e. Moreover, 

|| ƒ - / £ | | < max l l / - / , - ^ * 

= max | | / - ƒ, + g, - u\\èn5 
0 < / < r + l 

< max H / - ^ I U n 5 + l l a l U n 5 + l l « l l 5 

< e + 2e + ^Cc^ _ _ 
The requirement that /|Q n /) be in H{ti n D) can be addressed by 

demonstrating the existence of a holomorphic vector field defined in a 
neighborhood of E which is transverse to 3Z), as described by Fornaess and 
Nagel [16] and Bedford and Fornaess in [3] where some sufficient conditions 
for existence are derived. In particular, whenever H(dD) = C(3Z>), an 
arbitrary smooth transverse vector field can be approximated by a 
holomorphic one. 

There are various classes of weakly pseudoconvex domains which have 
been shown to be holomorphic sets; e.g., the regular domains of Diederich 
and Fornaess [10], [11], the domains of Weinstock [34], and the uniformly 
//-convex domains of Cirka [7]. Since both of the former types of domains 
are uniformly //-convex, it may be appropriate to limit remarks to this latter 
class which includes bounded domains with real-analytic boundaries [13]. 

DEFINITION 4.3. A compact set K C C" is called uniformly H-convex if there 
exists a sequence of domains GkD K and a constant C > 0 such that 

-£ < dist(AT, dGk) <sup dist(K, z) < \ 

for all k. _ 
On domains £2 in Cn whose closures ÏÏ are uniformly //-convex, the algebra 

H(Q) is dense in the algebra Ak+l(2) = C(A:)(Î2) n Hol(K) with respect to the 
ç{k-n) n o r m Hence, these domains qualify as front-line assault points for 
enlarging the class of weakly pseudoconvex domains on which holomorphic 
approximation is possible. 

5. Abstract holomorphic approximation. In the two types of counterexamples 
referred to in §1, approximation failed either (a) because nonsmoothness of 
the boundary precluded local holomorphic approximation of restrictions of 
functions in the boundary value algebra near singularities, or (b) because 
homomorphism spaces do not coincide due to analytic continuation of 
functions in the smaller algebra. 

With these two difficulties in mind, let D be a relatively compact domain in 
C1, let K be a compact subset of D containing d0H(D), and let AK(D) be the 
uniform algebra of uniform limits on D of functions which are continuous on 
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D and which are holomorphic at each point oi D \ K. An abstract approxi­
mation theorem for the algebra AK(D) is obtained in [5]: 

THEOREM 5.1. If J) is holqmorphically convex and if Hol(A") is dense in 
AK(D)\K9 then AK(D) - H(D). 

REMARK. In [5], Theorem 5.1 improved for a holomorphic set D and the 
requirement that K contain d0H(D) is inadvertently omitted in the statement 
of the theorem, but it is_present in all of the applications cited therein. The 
motivating example was D, a compact special analytic polyhedron, and K9 the 
distinguished boundary of the polyhedron, on which every continuous func­
tion can be approximated by functions in Ho\(K). _ 

OUTLINE OF THE PROOF. Let /i be a measure^orthogonal to H(D) and 
supported on K and let g be a function in AK(D). Let h E H{D) approxi­
mate g to within S on a neighborhood W of K and let U be an arbitrary 
neighborhood of K contained in W. By smoothing, there exists a smooth 
function gu which approximates g and is holomorphic where g is off U. 
Choose a strictly pseudoconvex domain fi contained in W u {z E Cn: dg(z) 
= 0}. (For simplicity, assume here, as in [5], that D is a holomorphic set.) Let 
$ be a smooth function such that 0 = 1 on U9 $ =* 0 outside W and 
0 < $ < 1. As described in §3, an (n9 n - 1) current X with_ measure 
coefficients supported in 12 can be found to satisfy dX = jx. Since 94>A = 3 $ 
A ^ + O A 3 ^ and X has measure coefficients, 3OX is a measure as well, 
disjointly supported on K and off U in W. The part of this measure off U 
annihilates all functions holomorphic on its support and the part of 30À 
supported on A" has total variation norm bounded by j| /i||, independent of the 
choice of 5. Thus since 

P(8u) - ( 3 * * + 3 0 - *)*)(&,) «8**(Si,) -a*A(&, - A) 

and 

| 3 * X ( f e ) l < l l M l l l l ^ - * I U 
it follows that ti(gv) » 0 and, hence, that /x(g) « 0. Therefore, H(D) =* 
^(Z>). 

This result can be applied, in particular, when d0H(D) is contained in a 
stratified totally real set M, the disjoint union of sets M, j = 1, 2 , . . . , k, 
where each Mj is a totally real (no complex tangents) C^oo) submanifold of 
Cn \ (J <<0A/,.. See Fornaess and Nagel [16]. 

When holomorphic convexityjs not assumed, there should be criteria for 
deciding which functions in A(D) are approximate by functions in Hol(D). 
Failure of approximation due to boundary singularities, presumably, is of 
diverse nature, but should be eliminated by hypothesizing local approxima­
tion. In the absence of boundary pathology, the lack of holomorphic convex­
ity typically gives rise to analytic continuation. Recently, Sibony [29] has 
developed necessary and sufficient conditions for the existence of analytic 
structure of all possible dimensions in the homomorphism space of a uniform 
algebra and it would be tempting to conjecture the following: if every function 
in A(D) can be locally approximated at each point of dD by functions in H(D)9 

then H(D) a A(AH(D))9 where the latter algebra is understood to be all 
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continuous functions on_AH(D)9 also holomorphic on the analytic structure 
which is present in &H(D). The domain fij of §1 is a case in point. However, 
is the conjecture verifiable even in the Diederich and Fornaess example fl2 

cited in the same section? One would like to say that precisely those f unctions 
in A(D) which analytically continue tojhe same sets as functions in H(D) 
can be approximated by functions inH(D). 

There are other approaches to this subject of equal importance which are 
neglected in the above discussion. Important among these are the work of 
Harvey and Lawson on holomorphic chains and their boundaries in [19], the 
work of Hörmander and Wermer [22] on uniform approximation on compact 
sets lying in smooth submanifolds in Cn, and the work of Sibony and Wermer 
[31] on generators of the boundary value algebra. 

Something could be said about holomorphic approximation in Stein mani­
folds and holomorphic approximation on arbitrary compact subsets of C1; by 
choice the discussion has been confined to approximation on the closure of 
relatively compact domains in «-dimensional complex space. For a more 
complete bibliography, the reader is referred to the survey paper [21] which 
lists 219 references to this general subject area. 

ADDED IN _PROOF. Without any assumption about the holomorphic 
convexity of /), Beatrous [2] succeeded in showing that if D is a weakly 
pseudoconvex domain in Cn with smooth boundaryjhen any function in A(D) 
can be uniformly approximated by functions in A(D) which extend holomorphi-
cally across each strongly pseudoconvex boundary point of D. The essential 
ingredient of the proof is a version of Lemma 4.1 which yields solutions to 
inhomogeneous Cauchy-Riemann equations satisfying uniform and Holder 
estimates and which is valid without assuming the holomorphic convexity of 
D. The result then follows from a patching argument similar to the proof of 
Theorem 4.2. 
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