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1. Introduction. Let G be a compact lie group. If M is a G-space, then 
one may consider M as a sort of singular fiber bundle over the orbit space M\G. 
Palais has proved a covering homotopy theorem and constructed classifying spaces 
for such types of "bundles" [8]. In this note we describe an analogue of Palais' 
covering homotopy theorem which is valid for smooth G-actions. Various guises 
of this smooth Palais theorem have already been important in the study of regu­
lar actions of the classical groups (see [3], [4], [5] and references therein). 

2. Orbit spaces. Let X and Y be smooth (= C°°) G-manifolds. A real-val­
ued function on XjG is said to be smooth if it lifts to a smooth function on X, 
so C°°(X/G) ~ C°°(X)G. F: X/G —• Y/G is said to be smooth if F*C°°(YIG) C 
C°°(X/G). By the slice representation a t x G I w e mean the representation of 
the isotropy group Gx on the normal bundle at x to the orbit Gx. Two G-orbits 
are said to have the same normal type if they contain points with the same iso­
tropy group and isomorphic slice representations (up to trivial factors). The sub­
sets of orbits of given normal type give a stratification of X/G by C°° manifolds. 
One can show that X/G is locally homeomorphic to closed semialgebraic sets 
where the homeomorphisms can be chosen to induce isomorphisms on rings of 
C°° functions and, up to components, to preserve strata ([1], [9]). Here a 
closed semialgebraic set is given its canonical stratification by singularity and the 
ring of C°° functions induced from the ambient space. 

If £ G X/G, let Tç(X/G) denote the Zariski tangent space at £, i.e. the dual 
of Mçl(Mç)2 where My is the maximal ideal of the ring of germs of smooth func­
tions at £. Tç(X/G) is always finite dimensional. Let o% denote the stratum of 
X/G containing £, and let N^X/G) denote the normal space T^XlG)lT^p^. 
Der C°°(X/G) denotes the real-linear derivations of C°°(X/G), and we call ele­
ments of Der C°°(X/G) smooth vector fields on X/G. B G Der C°°(XIG) is said 
to be strata preserving if for each £ G X/G the associated tangent vector /?(£) lies 
in Tç(oç). X°°(XIG) denotes the strata preserving elements of Der C°°(X/G), 
and X°°GY) denotes the smooth vector fields on X. 
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A smooth strata preserving map ƒ : X/G —•* Y/G is said to be normally trans­
verse if the differential of ƒ induces an isomorphism of N^(XIG) with Nf^(Y/G) 
for all | G X/G. 

3. Main results. The following is our smooth version of Palais' covering 
homotopy theorem. 

THEOREM I. Let f:X —• Y be an equivariant smooth map such that the 
induced map f : XIG —• YIG preserves normal type. Suppose that F: X/G x 
[0, 1] —• Y/G is a smooth strata preserving homotopy starting at f such that 
F( - , t): X/G —* Y/G is normally transverse, 0 < f < 1. Then there is a smooth 
equivariant homotopy F: X x [0,1] —> Y inducing F and starting at ƒ. More­
over, any two such liftings of F differ by a smooth equivariant isotopy of X 
which starts at the identity and induces the trivial isotopy on X/G. 

Restricted versions of Theorem î are in [1], [2], and [4]. It is not diffi­
cult to reduce Theorem I to the special case of covering smooth isotopies of X/G. 
Such isotopies are obtained by integrating time-dependent strata preserving vector 
fields, and Theorem I follows easily from the first part of 

THEOREM H. (1) The natural map it*. X°°(X)G —• Der C°°(XIG) has im­
age X°°(XIG). 

(2) There is a direct sum decomposition 

X~(X)G = Ker n* © W 

where W is a closed subspace of X°°(X)G (C°° or Whitney topology). 

The differentiable slice theorem (see [2] ) allows us to reduce the proof of 
Theorem II to the case of representations. One can then further reduce to prov­
ing an algebraic analogue of (1) which we establish using techniques from alge­
braic geometry and invariant theory. Main ingredients are Luna's slice theorem 
[6] and the Hilbert-Mumford criterion [7, Chapter 2 ] . 

During this work I have benefited from conversations with many mathema­
ticians, and I would especially like to thank E. Bierstone, D. Buchsbaum, D. 
Eisenbud, M. Hochster, D. Lieberman, and J. Mather. 
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