
BULLETIN OI THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 83, Number 5, September 1977 

INVARIANT DIFFERENTIAL EQUATIONS ON 
HOMOGENEOUS MANIFOLDS 

BY SIGURDUR HELGASON1 

1. Historical origins of Lie group theory. Nowadays when Lie groups enter 
in a profound way into so many areas of mathematics, their historical origin 
is of considerable general interest. The connection between Lie groups and 
differential equations is not very pronounced in the modern theory of Lie 
groups, so in this introduction we attempt to describe some of the founda­
tional work of S. Lie, W. Killing and É. Cartan at the time when the interplay 
with differential equations was significant. In fact, the actual construction of 
the exceptional simple Lie groups seems to have been accomplished first by 
means of differential equations. 

Although motion groups in R3 had occurred in the work of C. Jordan prior 
to 1870, Lie group theory as a general structure theory for the transformation 
groups themselves originated around 1873 with Lie's efforts about that time 
to use group theoretic methods on differential equations as suggested by 
Galois' theory for algebraic equations. It seems that a lecture by Sylow in 
1863 (when Lie was 20) on Galois theory2 (Lie and Engel [9, vol. 3, p. XXII]) 
and his collaboration with F. Klein, 1870, on curves and transformations 
(Klein and Lie [6], Engel [3b, p. 35]) were particularly instrumental in 
suggesting to him the following: 

PROBLEM (LIE [8a]). Given a system of differential equations how can knowl­
edge about its invariance group be utilized towards its integration! 

Since the solutions of a differential equation are functions, not just num­
bers as for an algebraic equation, one can take two different viewpoints for 
an analogy with Galois theory. 

Analytic viewpoint (Lie (1871-1874)). For a system of differential equations, 
consider the group of diffeomorphisms of the underlying space leaving the 
system stable (i.e., permuting the solutions). 

Algebraic viewpoint (Picard (1883), Vessiot (1891)). For a given differential 
equation consider the group of automorphisms of the field generated by the 
solutions, fixing the elements of the coefficient field. 

To indicate the flavor of the resulting theories I just recall a couple of the 
best known results. In ordinary Galois theory one has the fundamental result 
that an algebraic equation is solvable by radicals if and only if the Galois 
group is solvable. In the Picard-Vessiot theory one introduces similarly the 
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Galois group of a linear homogeneous ordinary differential equation, the 
so-called differential Galois group (since the automorphisms are assumed to 
commute with differentiation). The solvability of this group is then necessary 
and sufficient for the equation to be solvable by quadratures, f(x)-+ 
jf{x) dx, and exponentiation, g(x) -» e8{x\ 

To indicate the rudiments of Lie's theory, consider a differential equation 

(1) dy/dx = Y(x.y)/X(x,y) 

in the plane. It is called stable under a 1-parameter group <£>, (/ E R) of 
diffeomorphisms if each $t permutes the integral curves (all concepts are here 
local). 

EXAMPLE. 

cty_ _ y + x(x2 + y2) 
OX" X-y(X2+y2) ' 

The equation can be written 

V dx x ) ' \ x dx ) 

and since the left-hand side is the tangent of the angle between the integral 
curve and the radius vector, it is clear that the integral curves intersect each 
circle x2 + y2 = r2 under a fixed angle. The group of rotations around the 
origin therefore permutes the integral curves, i.e., leaves the equation stable. 

For a 1-parameter group <f>, of transformations in the plane with <j>0 the 
identity let T denote the induced vector field, 

THEOREM 1.1 (LIE [8a]). Equation (1) is stable under <ƒ>, if and only if the 
vector field Z = Xd/dx -f Yd / dy satisfies 
(4) [ T , Z ] - A Z 

where X is a function. In this case (XT) — Y£)~~l is an integrating factor for the 
equation X dy — Y dx = 0. 

Thus, knowing a stability group for a differential equation provides a way 
to solve it. For the example above, equation (2) is stable under the group 

<j>t: (x,y) —> (x cos t — y sin t, x sin / 4- y cos i) 

for which 

and the theorem gives the solution y = x tan(|(x2 •+• y2) 4- C), C a constant. 
Generalizing the 1-parameter group (<f>t) above, let 

(5) *;=ƒ.(*, , . . . , * „ ; / , , . . . , f r ) 

be an r-parameter local transformation group of w-space, the origin 
( / , , . . . , tr) = (0, . . . , 0) representing the identity transformation and rank 
(df/dtk) = r. In analogy with (3) define the vector fields ("infinitesimal 
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transformations") 

on Rw. Passing to the second derivatives of the ƒ., Lie proved that the group 
law for (5) implies that 

(6) [Tk,Tt]~ 2 Cj&r,, 

where the Cfa are constants satisfying 

(7) Cfi = - C£, 2 ( C ^ a + C ^ Q + C ^ ) = 0. 

This device, which through Lie's so-called "three fundamental theorems" 
relates the study of the local transformation group (5) to the algebraic study 
of the Lie algebra (6), (7) (the third theorem amounts to the statement that 
every system of constants Cfc satisfying (7) arises in this way), forms the 
foundation of Lie's theory of transformation groups. His first proof of (6) (cf. 
[8c, p. 52]) was incomplete (cf. loc. cit., p. 617) but was completed in his paper 
[8d, p. 462]; in the modern theory of Lie groups relation (6) amounts to the 
fact that when a Lie group G acts on a manifold M there is induced a 
homomorphism of the corresponding Lie algebra fl into the Lie algebra of 
vector fields on M. 

In one generalization of Theorem 1.1 from R2 to Rn (cf. Lie [8b]) one 
considers a differential equation 

n df 

/ - I **i 

where Xt E C°°(R"). Assuming the equation stable under a solvable (n - 1)-
parameter transformation group, its solutions can be found by quadratures. 
(Here the term "solvable" has replaced the older term "integrable" and the 
term quadrature is used for integration f(x) -» ff(x) dx in analogy with 
taking square roots in the analogous result for an algebraic equation.) 

Such results, and their generalization to systems, suggested the problem of 
classifying all local transformation groups of Rw. Lie solved this for n = 1, 
where the local groups are 

(9) x •-> x + a, a E R const, 
(10) x-*ax + b, Û 6 R - ( 0 ) , 6 6 R , 

(11) x -> (ax + b)l (ex + d), a, b,c,d E R, ad - be = L 

For n = 2 the possibilities are already quite numerous (cf. [8f, vol. V, p. 768]) 
so the assumption of primitivity (no invariant decomposition of the space into 
lower-dimensional submanifolds) was introduced. Then there are for n = 2 
just 3 possibilities, namely the 8-parameter analog of (11) (the projective 
group), the 6-parameter analog of (10) (the affine group), and its 5-parameter 
subgroup of area preserving transformations (analog of (9), the special affine 
group).3 Lie [8e] and, his student in Leipzig, Page [11] settled the cases n = 3, 

In [10] Mos tow determines all global transitive Lie transformation groups of surfaces. 
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4 respectively; later Kowalewski and Beutner worked out the cases n = 5 and 
n « 6, respectively. The direct attack on the problem was not continued 
further because the complexities had become rather formidable, and since the 
problem had taken a new direction through the work of Killing and Cartan. 

W. Killing, who wrote his dissertation with Weierstrass in 1872, began in 
1877-1878 geometric investigations which, without knowledge of Lie's work, 
led him to concepts close to Lie's infinitesimal transformations and to 
relations equivalent to (6). (Cf. Lie and Engel [9, vol. 3, p. 768].) Even before 
getting acquainted with Lie's work, Killing had set himself the problem of 
finding all possible "Zusammensetzungen" of r-parameter groups. In other 
words, he wanted to find all possible ways, up to isomorphism, in which an 
r-dimensional vector space can be turned into a Lie algebra. 

Thus Lie's classification problem (which, as indicated, arose from his study 
of differential equations) consisted of Killing's algebraic problem together 
with the problem of classifying the various representations of a given group as 
a transformation group. This viewpoint was decisive for the theory of Lie 
groups, but separated it gradually from differential equations. 

On 18 October 1887 Killing wrote to F. Engel, who was then Lie's assistant 
in Leipzig, that he had succeeded in finding a complete classification of the 
simple Lie algebra g over C. In this work [5] Killing introduced many of the 
fundamental concepts for the theory of simple Lie algebras, in particular, the 
following: 

(a) The rank / of g. 
(b) For the linear transformation ad X: Y->[X, Y] the characteristic 

equation 

(12) det(co - ad X) = <o' - xp2(X)œr~2 + • • • ± $r-i(
xW " °-

The coefficient 2\p2(X) which equals Trace(ad Xf is now called the Killing 
form. Equation (12) had also been used extensively by Lie. 

(c) The roots of g which, by definition, are the functions u(X) on g 
satisfying (12). 

(d) A basis col5 . . . , <o7 of roots of which all roots are integral linear 
combinations (with all coefficients of the same sign) and the associated 
matrix (ay) where 

(13) -ay = the largest integer q such that o)j + q^ is a root. 

This matrix is now called the Cartan matrix. 
In this remarkable work, Killing finds all possibilities for the matrix {atJ) 

and writes down the corresponding roots œ(X) (cf. [5, II, §15]). Thus he 
arrives at the statement that apart from the classical simple Lie algebras 

Al (I > 1), Bt (I > 2), q (I > 3), Dt (/ > 3) 

(known from Lie's work), there are only six more, of ranks and dimension, 
respectively, 

/ = 2, 4, 4, 6, 7, 8, 
r = 14, 52, 52, 78, 133, 248. 

These exceptional Lie algebras are denoted G2, E4, F4, £6, ZT7, £8, respec­
tively. Killing denoted G2 by (IIC); he observed that A3 = D3, but did not 
notice that E4 = F4, although, as Cartan remarked, this is immediate from his 
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root tables in [5, II, pp. 30-31]. Killing's work [5] was immediately recognized 
as a breakthrough. However, it was also criticized, particularly by Lie [9, vol. 
3, pp. 768-771], for serious gaps and inaccuracies. E. Cartan set himself the 
problem of giving genuine proofs of the results stated by Killing. Apart from 
pointing out many errors in detail, Cartan found the following gaps in 
Killing's papers particularly significant: (a) In [5, II] Killing makes the 
explicit assumption that the nonzero roots of (12) are simple. While this is 
correct, his justification in [5, III] of this assumption was incorrect, (b) A 
proof that at most one g can correspond to a given matrix (at) was lacking. 
Cartan showed, case-by-case, that this is so; an a priori proof was given much 
later by van der Waerden [13]. 

The actual existence of the exceptional Lie algebras is another major 
weakness of Killing's work. He indicates in [5, II, §18] how the structural 
constants Cjk can be determined from his root tables. Then the Jacobi 
identity (7) has to be verified; Killing does this for G2, but for the others his 
indications [5, II, p. 48] seem unconvincing. 

In his thesis [lb], É. Cartan gave a complete proof of the classification 
results stated by Killing; in outline his method follows Killing's program. He 
determined the matrices {at), the roots co(X) and a basis for each of the 
exceptional Lie algebras with respect to which the structural constants have a 
simple and symmetric form [lb, §§18-20] whereby the Jacobi identity (7) is 
(presumably) simple to verify.4 But he was also interested in realizing the 
exceptional Lie groups by transformations, like e.g. the classical algebra C7 is 
the Lie algebra of the linear group leaving invariant the Pfaffian form 

x\4y\ ""* y\dx\ + • • • + xldyl - ytdxt. 
Killing had been led to expect that G2 could be realized as a transformation 

group in R5, but not in a lower-dimensional space. Engel and Cartan showed 
that it can be realized as the stability group of the system 

CWC'i "i X \ClXy """" XjClXt —" U, 

CIXA I A ^ W A | ~""~ X ^ClX-y — U, 

dx5 + x2dx3 — x3dx2 = 0, 

in R5 (Engel [3a], Cartan [lb, p. 281], Lie and Engel [9, vol. 3, p. 764]). 
Cartan represented F4 similarly by the Pfaffian system in R15 given by 

4 

(14) dz = 2 yidxn dxtj = xtdxj - Xjdxt + yhdyk - ykdyh, 
l 

where z, x^yp xtj = — xjt (i ^ j , ij = 1, 2, 3, 4) are coordinates in R15 and in 
(14) i,y, h, k is an even permutation [la, p. 418]. Similar results for E6 in R16, 
E7 in R27 and Es in R29 as contact transformations are indicated in [la]. 
Unfortunately, detailed proofs of these remarkable representations of the 
exceptional groups do not seem to be available. 

4 In [15], Witt gives an explicit geometric construction of the 5 exceptional Lie algebras and 
proves a priori that to each Cartan matrix (a0) corresponds a simple Lie algebra (provided this is 
so for / < 4). Chevalley [2] indicates a general algebraic proof (without this proviso); see also 
Harish-Chandra [4]. 

file:///ClXy
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2. Invariant differential operators. In our days when Lie group theory has 
been so highly developed, it is reasonable to reverse the viewpoint in Lie's 
problem in §1, that is, consider the group as the given object and investigate 
differential operators invariant under a given group. 
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Let I be a manifold and D a differential operator on X. Let <f> be a 
diffeomorphism of X onto itself. For a smooth function ƒ on A' we put 
f* = ƒ ° </>-1 and define the operator Z)̂  by 

/ ) * : ƒ ̂  (/)ƒ*-')*; 

then D* is another differential operator. The operator Z) is said to be 
invariant under </> if 

(1) D* = D. 
This is a very natural condition on a differential operator and examples 

abound; the polynomials P(L) in the Laplacian L on R" (or on any two-point 
homogeneous space) are precisely the differential operators invariant under 
all isometries; similarly the wave operator on R4 (or on an isotropic Lorentz 
space) is characterized by its invariance under the Poincaré group (respec­
tively, its isometry group), cf. [10a]. 

We shall now discuss differential operators on a manifold invariant under a 
transitive Lie group of diffeomorphisms. To be specific, let G be a Lie group, 
K c G a closed subgroup, G/' K the manifold of left cosets gK (g E G) and 
D(G/ K) the algebra of differential operators on G j K invariant under all the 
transformations r(g): xK-^gxK of G/K onto itself. We write D(C) for 
D(G/e), the algebra of left invariant differential operators on G. Let Q and f, 
respectively, denote the Lie algebras of G and K, let U(ç\) denote the 
universal enveloping algebra of Q and U(ç\)f the centralizer of f in U(ç\). As 
noted by Schwartz and proved in [8a, p. Ill] we have the canonical 
isomorphism 

(2) D(G)«</(8) . 

More generally [10a, Chapter III], if the coset space G/K is reductive and K 
connected, we have the isomorphism 

(3) D ( G / t f ) « t/(A)7(t/(A)f H l/(fl)f) 

expressing the algebra of invariant differential operators in Lie algebra terms. 
Of the many problems one can contemplate for these operators we will 

discuss the following. 

A. Solvability. Given D E D(G//Q, is the differential equation Du = ƒ, for 
ƒ E C°°(G/K) arbitrary, globally solvable (respectively, locally solvable)? If 
so we say that D is globally solvable (respectively, locally solvable). 

For the simplest case G = R", K = (0), the operators in D(G/K) are those 
of constant coefficients and the global solvability is well known (Ehrenpreis 
and Malgrange). 

B. Joint eigenfunctions. Determine the functions on G/K which are eigen-
functions of each D E D(G/K). Similar problems for joint eigen-
distributions. 

C. Eigenspace representations. Let /x: D(G/K)-*C be a homomorphism 
and let £M denote the corresponding joint eigenspace, i.e., 

£M= { / E C 0 0 ( C / ^ ) | Z ) / = iu(Z))/forallZ) E D(G/K)} 



758 SIGURDUR HbXGASON 

and let 7^ denote the natural representation of G on this eigenspace, i.e., 

(T^gWxK) - f(g~lxK) for g, x EC, 

ƒ E E p. For which JU is this "eigenspace representation" T irreducible and 
what representations of G are so obtained? 

D. Extensions to vector bundles. In the following sections we survey various 
results concerning A, B, and C for certain important classes of homogeneous 
spaces (symmetric spaces and their duals). First we explain how invariance 
condition (1) can be generalized in a natural way to a smooth vector bundle 
E over a manifold X (cf. Bott [1]). If p: E-* X is the projection map, a 
smooth section is a C00 map s: X -> E such that p(s(x)) = x for all x E X. 
The smooth sections form a vector space T(E). Let D be a differential 
operator on £, that is, a linear operator from T(E) to T(E) which via 
arbitrary local trivializations of E is expressed by means of ordinary partial 
differential operators with linear transformations of the fibers Ex as 
coefficients (cf. [29, p. 66]). Let <j>: E -> E be a diffeomorphism commuting 
with p such that for each x E X the restriction map Ex —> E^x) is a vector 
space isomorphism. Then <f> acts on T(E); if s E r (£) the map s* given by 

obviously belongs to r(£) , and we can define the differential operator 

D+is-^iDs*'1)*, s ŒT(E). 

Again we call D invariant under </> if D* = D. For the trivial bundle E = 
X X R sections become functions, and this invariance notion reduces to (1). 

As an example let X = R4, and G the universal covering group of the 
Lorentz group G, and it the natural mapping of G onto G; G acts on R4 as the 
Lorentz group and G acts on R4 via the spinor respresentation. Each g E G 
acts on the trivial bundle E = R4 X R4 by 

g- (x^y) = (*{g)-x*g-y) 
and the Dirac operator is invariant under this action. 

Now suppose X = G/' K and 8 a representation of K on a finite-dimen­
sional vector space V. Let E = G XK V denote the product G X V modulo 
the equivalence relation (gk, v)^(g, 8(k)v) for g E G, k E K, v E K If 
[g, r] denotes the equivalence class of the element (g, v) E G X K, then the 
mapping p: [g, ü]-^g/C turns £ into a vector bundle over X = G//C. The 
group G acts on £ via the map g0*[g, r] = [g0g< t>] and this action 
commutes with /?. If for a section 5 E T(£) we put 

S(g) = g~l-s(gK)< 
then the mapping s -* £ is a bijection of r (£) onto the set of smooth 
K-valued functions ƒ on G satisfying f(gk) = 8(k-])(f(g)). Let Dy(G) 
denote the set of left invariant differential operators on G with coefficients in 
Hom(K, V) and let Dy(G)f denote the centralizer of the set {T 4- 8(T)\T E 
f} in Dy(G). Assuming K compact and connected we have, in analogy with 
(3), that the mapping which sends D E Dv(G)f to the differential operator 
/x(Z)) given by 
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(n(D)s) = Ds, sET(E), 

is a homomorphism of Dv(G)f onto the algebra D8(G/K) of G-invariant 
differential operators on E. 

Problems A, B, and C are meaningful for the invariant differential opera­
tors on E; problem C is particularly interesting for the algebra DÔ(G/ K) and 
for subalgebras of it. As will be explained later it seems that the known 
irreducible representations of semisimple Lie groups and of nilpotent Lie 
groups can thus be realized as eigenspace representations. 

For a manifold X we shall use Schwartz's notation °\)(X) and &(X) for the 
spaces CC°°(X) and C00(Ar), respectively, with their customary topologies. 
Their strong duals fy^X) and &'(X) then consist of the distributions on X 
and the distributions of compact support, respectively. 

3. Solvability. For the solvability question A we consider first one of the 
best known class of coset spaces, the symmetric spaces X = G/ K of the 
noncompact type (G a connected semisimple Lie group with finite center, K a 
maximal compact subgroup). Here we have for each D E D(G/ K) the global 
solvability 

0 ) DC°°(X) = C°°(X) 

as was proved in [10e] using the Fourier transform on X. We recall the 
original definition of the Fourier transform on X from [10c] since we shall 
state some new results for it below. The Fourier transform of a function F(y) 
on Rn can be written 

(2) F(TJCO) = ( F(y)e~i71^) dy 

where 17 > 0, |co| = 1 and (y, 10) is the usual inner product. Geometrically, 
(y, co) is the (signed) distance from the origin to the hyperplane through y 
perpendicular to co. It turns out to have an analogue for the symmetric space 
X = GI' K. To define it let G = KAN be an Iwasawa decomposition of the 
group G; here A is an abelian subgroup and N a nilpotent subgroup. (In the 
case G = SL(/?, R), K = SO(A?) the group A is the group of positive diagonal 
matrices with determinant 1, N the set of supertriangular matrices with 
diagonal 1; here the decomposition amounts to the usual Gram-Schmidt 
orthonormalization process.) Let M denote the centralizer of A in K and B 
the coset space K/M. 

A horocycle in X is an orbit in X of a group of the form gNg~K The group 
G permutes the horocycles transitively. More precisely let o = {K} (the 
origin in X) let £0 denote the horocycle /V • o. Then each horocycle £ can be 
written £ = ka - >̂, where kM is unique in B (called the normal to the 
horocycle), and a E A is unique (called the complex distance from o to £). 
This representation of £ is obvious in the case of the Poincaré disk where the 
horocycles are the circles tangential to the unit circle. Given x E X, b E B 
there is a unique horocycle through x with normal b\ let a(x, b) denote its 
complex distance from 0 and let A (x, b) be the element in the Lie algebra a 
of A satisfying exp A(x, b) = a(x, b). This vector-valued function A(x, b) on 
A' X Bis the desired analog of the scalar product (ƒ, co) for R" X S"_1. 
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The space X has a certain canonical Riemannian metric and we let dx 
denote the volume element on X with respect to this metric. Let a* denote the 
dual of the vector space a. 

Given a function ƒ (x) on X we define its Fourier transform in analogy with 
(2) by 

(3) ƒ (A, b) = [ f(x)e
{-iX+P){AM)) dx (A G a*, b G B). 

Jx 
Here p is a certain fixed element of a*: 2p(H) is the Jacobian of the 
automorphism n -»exp(//)« exp(-/7) of N. It turns out that the transform 
(3) is one-to-one on ty(X). There is an inversion formula of the same type as 
well as a Plancherel formula relating the L2 norms of ƒ and ƒ. But for the 
proof of (1) the important result to have is a theorem of Paley-Wiener type, 
that is, an intrinsic characterization of the space 6i>(X)~. To describe it let W 
denote the Weyl group of Û, that is, the (finite) group of linear trans­
formations of a induced by those elements of K which normalize a. Then we 
have the following result [10e]. 

THEOREM 3.1. The space tf)(Xy of Fourier transforms consists of the smooth 
functions <|>(A, b) on û* X B satisfying: 

(i) À —> <£(A, b) extends to an entire function of exponential type on the 
complexification a*, the exponential type being uniform in b G B. 

(ii) For each s E: W and each À G a*, 

JB JB 

where db is a K-invariant measure on B. 

The application of the Fourier transform (3) to prove (1) is based on the 
fact that the kernel in (3) is an eigenfunction of D, i.e., 

(4 ) J) /e(i\ + p)(A(x,b))\ = p A ) ^ ( / A + p ) ( / , ( x ' è ) ) , 

where the eigenvalue is a polynomial PD(X), independent of b. After proving 
first local solvability of D and using functional analysis tools familiar from 
the constant coefficient theory, (1) is reduced to proving the implication, 

(5) ƒ G 6D (X ), supp(Z)/) c V => supp( ƒ ) c V 

tor any closed ball V in X, supp denoting support. But using Theorem 3.1, 
statement (5) is translated into the following known property for holomorphic 
functions. If F is an entire function of exponential type, ? = ^ 0 a polynomial 
and PF of exponential type < R, then F is of exponential type < R. 

In order to have an analog of (1) for distributions it would be sufficient to 
have a topological version of Theorem 3.1. We will now describe a special 
result of this type. For this let 8 be an irreducible unitary representation of K 
on a vector space V6 of dimension d{8), and let 8' denote the contragredient 
representation. Let V$* denote the set of vectors v G Vô fixed under 8(M) 
and 1(8) = dim KÔ

M. We assume 1(8) > 0. Let p be the orthogonal comple­
ment of f in g with respect to the Killing form and pc, tc and QC their 
respective complexifications. Let H be the set of /C-harmonic polynomials in 
the symmetric algebra SQoc) and put 77* = A(/7), where A is the canonical 
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symmetrization map of the symmetric algebra over gc onto the complex 
universal enveloping algebra [/(g). Let (D,) be a basis of V£* and (e,) a basis 
of the space of linear maps of Vô into /ƒ* commuting with the action of K. 
Since t/(ô) = (£/(ô)ï + nt/(ô)) 0 U(a) (where n is the Lie algebra of N) we 
have a mapping u-> qu of (/(g) into (/(a) given by u - qu E i/(g)f + 
nf/(g). As in Kostant [22a] we consider for A E a* the complex 1(8) X 1(8) 
matrix 

The space 3C(ct*) of entire functions of exponential type on a* has a natural 
topology with respect to which the Euclidean Fourier transform 

F (a) -> F*(A) = f F(a)e-iMXo*a) da 
JA 

is a homeomorphism of üD(v4) onto %(a*) [6b]. The same holds for the space 
fÜ(u*, V) of holomorphic functions of exponential type with values in a 
finite-dimensional vector space V. Consider now the subspace 

(6) %ô(a*) = { f E %(a\ Hom(Kô, VÔ))\(QÔ' ) " V W-invariant] 

with the relative topology, and the closed subspace °Dd>(X) c °P(Ar) consist­
ing of those functions in 6])(X) which are /^-finite of type 8'. Finally let <Ï>AÔ 

denote the generalized spherical function 

*x,a(*) =feiiK+MA<x>kM»8(k) dk. 

Then we have the following refinement of Theorem 3.1 (cf. [10g]). 

THEOREM 3.2. The mapping ƒ -» ƒ where 

ƒ (A) - rf(8 ) f ƒ (*)*^(x)* <fe (* - a/j*/*;) 

is a homeomorphism of 0DÔ,(X) onto 'Xô(û*). 

In addition to Theorem 3.1, the proof uses the relationship of Q8(X) to the 
intertwining operators for the principal series found by Johnson and Wallach 
[17]. From Theorem 3.2 we have immediately the following consequence. 

COROLLARY 3.3. Let D ¥= 0 in D(G/K) and let 0^Ó(X) denote the space of 
K-finite distributions on X. Then 

(7) D%(X) = ^(X). 

For the space $ '(X) the analog to (7), of course, fails; as a consequence of 
Theorem 3.1 the range D&' consists of those distributions T E &'(X) whose 
Fourier transform f (A, b) is divisible by the polynomial PD(X) in (4) (cf. [10e, 
§8]). 

Next let us consider the solvability question for a Lie group L viewed as a 
homogeneous space under left translations. The operator 3/3.* + i d/dy + 
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ix 3/3z on R3 is a left invariant differential operator on the Heisenberg group 

x,y%z E R, 
1 X Z 

0 1 y 
0 0 1 

yet it is essentially the same as H, Levy's operator which he proved was not 
locally solvable (cf. [3]). Thus the operators in D(L) are not, in general, 
locally solvable. 

The contrast between this negative result for L and the positive results for 
the symmetric space G / K disappears when we view L as a symmetric space. 
A coset space B/C (B a Lie group, C a closed subgroup) is called a symmetric 
coset space if there exists an involutive automorphism o of B with fixed point 
set C. The spaces G/K considered above have this property. Now we 
consider L as a homogeneous space under left and right translations simulta­
neously, i.e., we let the product group L X L act on L by 

(gvg2)'g-*g\g82X> g E L-
The subgroup leaving e fixed is the diagonal L* = L so we have the coset 
space representation 

(8) L = (Lx L)/L*. 

Then the algebra D(L X L/L*) is canonically isomorphic to the algebra 
Z(L) of bi-invariant differential operators on L, and the natural problem 
becomes: Given D E Z(L), is it globally (respectively, locally) solvable? In 
[5], Duflo and Raïs proved 

THEOREM 3.4. Let L be a solvable Lie group. Then each bi-invariant 
differential operator D ^ 0 is locally solvable. 

This had been proved in Raïs [31] for the special case of a nilpotent Lie 
group. Their proof is based on a detailed description of the operators 
D E Z(L) by means of harmonic analysis on L, whereby a local fundamental 
solution can be constructed, giving local solvability. An entirely different 
proof was given recently by F. Rouvière [33]. He proves that given D E Z(L) 
there exists a bi-invariant differential operator f ^ O o n the derived group L' 
such that for L2 norms on L, 

(9) ||£w||<||Z)w|| 

for u E C°°(L) of sufficiently small support. On the other hand Hörmander 
showed [15, p. 157] that local solvability of E on L' implies certain sup norm 
inequalities which, using the invariance of £", Rouvière converts into norm 
inequalities, 

(10) I f u(x)v(x) dx\ < C||w|| J f£ü||.. 
\jL, | 

Here dx is a right invariant Haar measure, C a constant, *E the transpose of 
£, || ||k a Sobolev-type norm (involving L2 norm of derivatives up to the kth 
order) and u and v have sufficiently small support. On the other hand it is 
well known (cf. [15, p. 178] or [38, p. 142]) that (10) implies local solvability of 
E on L'. Now (9) and (10) imply by elementary estimates that (10) holds for 
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the operator D on L. Thus local solvability of E implies that of D so the 
theorem follows by induction.5 

THEOREM 3.5. Let L be a semisimple Lie group. Then each bi-invariant 
differential operator D ^ 0 is locally solvable. 

This is proved in [10e] using Lemma 24 in [8a] which relates explicitly the 
action of D on invariant distributions with the action of a constant coefficient 
operator on the Lie algebra, together with a result of [31] that all invariance 
properties of a constant coefficient operator are preserved in a suitable 
fundamental solution. 

Global solvability does not, in general, hold in Theorem 3.5, as shown by 
the following interesting example due to Cerèzo and Rouvière [3]. Let G and 
K be as above and assume that g has a complex structure / ; then g = f + J f. 
Let (T() be a basis of f, orthonormal with respect to the negative of the 
Killing form on g. Then the operator <o = 2 ,(,77}) 7) lies in Z(G) but anni­
hilates all functions on G which are right invariant under K, hence is not 
globally solvable. 

Nevertheless we have the global solvability 

(11) fiC°°(G)= C°°(C) 

for the Casimir operator ÏÏ on any connected noncompact semisimple Lie 
group G. This was proved in [3] for complex G using harmonic analysis on G. 
For general semisimple G, (11) was proved by Rauch and Wigner [32]. The 
main ingredient in their proof is the verification that no null bicharacteristics 
of £2 lie over a compact subset of G. They also prove that 12 is injective on 
°D(G) and has a property similar to (4). Some general results of that nature 
have been proved by K. Johnson [16]. 

Since a general Lie group L decomposes into a semisimple Lie group and a 
solvable Lie group (strict semidirect product if the big group is simply 
connected) one could hope for a joint generalization of Theorems 3.4 and 3.5 
to all Lie groups.6 But taking (1) into account as well as the representation (8) 
of L as a symmetric coset space, we are led to an even more general question: 

Let B/C be a symmetric coset space and D a B-invariant differential 
operator on it. Is D necessarily locally solvable! 

4. Joint eigenfunctions. We shall now give a survey of relatively recent work 
towards determining the joint eigenfunctions of the operators in D(G/K). 
First we consider the case when G/K is a symmetric space X of the 
noncompact type. The joint eigenfunctions can be characterized (cf. [10b, p. 
439]) by the functional equation 

(1) <i>(o) (<!>(gk • x) dk= <t>(g- o) (<t>(k • x) dK 

5 After this was written I received a preprint [4] from M. Duflo establishing this local 
solvability in general. His proof combines new algebraic results about Z(L) with the method of 
Theorem 3.4. 

6 ADDED IN PROOF. In a recent preprint [42], Wigner proves global solvability for a simply 
connected nilpotent Lie group. 
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g G G,x G G/K. By (4) in §3 the functions x ~* e'{A{Xtb)) (v G a*) are joint 
eigenfunctions and the inversion formula for the Fourier transform (3) 
suggests them as building blocks for all joint eigenfunctions. Harish-
Chandra's integral formula 

(2) ^(JC) - (eviMxM db (v G û*) 

for the A'-invariant eigenfunctions on X (the spherical functions) is the proto­
type of the integral representations one might expect for the solutions of (1). 
In Furstenberg [7b] and Karpelevic [18] the following result is proved. 

THEOREM 4.1. The functions 

(3) x -> fev(AixM dii(b), xGX, 
JB 

where v G a* and /x a positive measure on B constitute all the positive joint 
eigenfunctions ofD(G/K). 

Furstenberg's proof is purely measure-theoretic. It consists of proving, 
using methods of Choquet and Deny, that the convex cone of positive 
solutions to (1) is generated by the extremal rays, which then are related to 
the integrand in (3). Karpelevic's method goes further and he gives an integral 
representation of the positive eigenfunctions of the Laplace-Beltrami operator 
L on G/ K. A fundamental solution for the operator L-const is constructed 
rather explicitly via the heat equation on G/K and the minimal solutions are 
constructed from the fundamental solution by means of the method of 
Martin [26]. Since any positive eigenfunction is a measure-theoretic super­
position of minimal eigenfunctions, the integral representation for positive 
eigengenfunctions of L follows; formula (3) is a simple corollary. 

The problem of determining all joint eigenfunctions was raised in [lOd, p. 
139] and it was proved for the hyperbolic disk that analytic functional (alias 
hyperfunctions) on the boundary are what is needed to give (by superposition) 
all the eigenfunctions of L. 

THEOREM 4.2. The eigenfunctions of the Laplace-Beltrami operator on the 
hyperbolic space X are precisely the functions 

(4) x->fep(A(x>b))dT(b) 

where v G a* and T an analytic functional on B. 

The method amounts to first determining the ^-finite eigenfunctions of L 
in terms of hypergeometric functions, and then showing, using asymptotic 
properties of the hypergeometric functions, that the convergence of the 
expansion of an arbitrary eigenfunction on X into ^-finite ones implies 
convergence of the boundary values in the sense of analytic functionals. This 
method gives the following partial solution for X of rank one. 

THEOREM 4.3. Let X be symmetric of rank one. The functions (4) for v real 
(i.e., v G a*) constitute all the eigenfunctions of L with eigenvalue > —<p, p>. 
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For the proof see [10f]. Intermediary results extending Theorem 4.2, using a 
similar method, were given by Hashizume, Minemura and Okamoto (cf. [9b], 
[27a, M D . 

The A'-finite joint eigenfunctions of D(G/K) are determined in [lOd, g] as 
follows, generalizing (2). 

THEOREM 4.4. Let G/K be arbitrary. The K-finite joint eigenfunctions of 
D(G/ K) are precisely the functions 

(5) $„(*) = fe"U(x>b))F(b)db 

where v E a* and F is a K-finite function on B. Moreover, there exists a right 
invariant differential operator D on G such that 

The proof is primarily based on the Paley-Wiener theorem for ^-finite 
functions (Theorem 3.2). As pointed out in [lOd, p. 138] for X of rank one, 
Theorem 4.4 implies that each joint eigenf unction of D(G/K) has the form 

ƒ(*) = fep(A{x<b))dT(b% 
JB 

where T is a "functional" on B (possibly depending on v and ƒ). The 
conjecture, suggested by Theorems 4.2-4.3, that these functionals are just the 
analytic functionals (hyperfunctions) on B was taken up in a remarkable 
cooperation of Kashiwara, Kowata, Minemura, Okamoto, Oshima, and 
Tanaka (cf. [19]), and they proved the following general result. 

THEOREM 4.5. Assume X E a* satisfies1 

(6) 2</A, «>/<«, a> g Z 
for all restricted roots a of g with respect to a and let ft: D(C/K) -» C be the 
homomorphism given by /x(D) = PD(X) in the notation of (4), §3. Then the 
functions 

(7) f(x) » /V A +P>04<^)) dT(b), 
JB 

where T is a hyperfunction on B constitute all the elements in the joint 
eigenspace E^. 

The proof uses many results from the extensive theory of hyperfunctions 
while Theorem 4.3 only requires a characterization of their spherical harmon­
ics expansion. 

It is of interest to observe that if X has rank 1 and if condition (6) fails, the 
condition of Theorem 4.3 is satisfied, so we have 

THEOREM 4.6. If X has rank one the functions (7) constitute all the eigenfunc­
tions of the Laplacian on X. 

In his paper [24], J. Lewis investigates the functions (7) as T runs through 
the space °i\B) of distributions on 5, and proves the following result. 

ADDED IN PROOF. In a recent communication Minemura and Oshima avoid this restriction. 
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THEOREM 4.7. If T E. tf)'(B) then the function f(x) in (7) grows no faster 
than ecd^x) (C = constant, d distance). The converse holds for X of rank one 
provided (6) is satisfied. 

In the case when G / K is a Hermitian symmetric space there are integral 
representations of the type (3) (with B replaced by the Bergman-Silov 
boundary) for bounded holomorphic functions [13], [25], [7a], [28], and for 
solutions of a certain overdetermined system [21]. 

We can also consider the case when G / K = R" (n > 1) and G the group of 
all isometries. Here D(G/K) is generated by the Laplacian L; from general 
results of Ehrenpreis [6a] we have that the solutions to Lu = -\2u (À G C) 
are given by 

u(x)=jei(x<ndii(Ç) 

where /x is a measure with support on {£ E C"|f f + • • • + f„2 = X2) satisfy­
ing 

j V ( * , I m n ( 1 + | £ | ) " r f / l ( n < 0 0 

for all TV and all x £ R " ; here, however, JU, is not unique. One can also prove 
(for À =£ 0) an integral formula 

u(x) = ( eiMx^dT(u) 

for the solutions to Lu = -\2u in analogy with (4) (cf. [9a], [10f]), but then T 
is more general than an analytic functional: for n = 2 the T are the continu­
ous linear functionals on the space of analytic functions on S1 which extend 
to holomorphic functions ƒ on C - (0) such that f(z) and f(z~x) have 
exponential type at z = oo (cf. [lOf]). 

Next we consider the case of a simply connected symmetric space U/K of 
the compact type. We assume U/K dual to the noncompact space G/K in 
Theorem 4.4, that is, G is a subgroup of the simply connected complexifica­
tion Gc, whose Lie algebra QC is the complexification of Q as well as of the Lie 
algebra u of U. We also take U to be the analytic subgroup of Gc with Lie 
algebra u; then U and U/K are both simply connected. 

Let A(g) = A(gK,eM)(g E G) so g = n expA(g)k with n E N,k E K. 
The mapping A : G -» a can be extended to a holomorphic mapping A : 
Gc° -» QC of a neighborhood Gc° of the identity in Gc into the complexification 
ac of a as follows (Stanton [36], Sherman [35b]). For the complexified 
Iwasawa decomposition $c = nc + ac + fc the mapping 

(X, //, T) -> exp X exp H exp 7 

is a holomorphic diffeomorphism of a neighborhood of (0, 0, 0) in nc X ac X 
tc onto a neighborhood Gc° of e in Gc. The mapping 

exp X exp H exp T -^ H 

is then the desired holomorpnic map ,4: G®-*ac. Taking QC with the 
customary Hubert space inner product (A\ Y) -> — 2?(A\ TK), where T is the 
conjugation of QC with respect to it, we may take Gc° as the diffeomorphic 
image (under exp) of an open ball B0 c ç\c with center 0. Let 
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U0 = exp(#0 n u). 

It is clear that for each v G a* the function u —> ev{A{u)) on U0 is an eigen-
function of each D G D(U/K); moreover, as noted in Stanton [36] and 
Sherman [35a, b], the spherical functions on U/K are (by analytic 
continuation) given by the analog of Harish-Chandra's formula (2), namely 

<t>(uK) = [e-rtMkuk"1)) dk^ u E u^ 

where /x is the highest weight of the spherical representation associated with 
<f>. More generally we have (cf. [10h]) 

THEOREM 4.8. Each joint eigenfunction ofD(U/K) has the form 

f(uK) = f e-^A{k~Xuk))F(kM)dkM (u G U0) 
JK/M 

where dkM = db, F G C°°{K/M) and jit G a* satisfies <JU, a>/<«, a> G Z+ 

for all restricted roots a > 0. Conversely, if \i satisfies this condition the function 
f extends uniquely to an analytic function on U/K which is a joint eigenfunction 
ofD(U/K). 

Next we consider for a symmetric space G/'K of the noncompact type the 
space S = G/ MN (§3), which is identified with the space of horocycles in 
G/' K, and has many properties analogous to those of G/ K. In particular, the 
G-invariant differential operators on 2 are all of the form 

(DP<f>)(gMN) 

- | p ( j L , . . . , |-)*(gexp(/1tf1 + . . . + /,tf/)A/tf)j 

where P G S(ac) and the mapping P - * DP is an isomorphism of S(ac) onto 
D(G/MN) [10d]. Thus the solvability questions of §3 reduce to constant 
coefficient questions. Noting that G/'MN = (K/M) X A we find easily the 
following answer to Problem B, §2. 

PROPOSITION 4.9. The joint eigendistributions ofD(G/MN) are given by 

(9) ¥(4>) = f f^(kaMN)e{ik+p)0o&l) <fa dS(kM) (<f> G »D(2)) 

w/zere X G a* aW S G °D'(fi). Tfte eigenvalues are polynomials in À, indepen­
dent of S. 

Let L,DX'(2) denote the space of the distributions ^ in (9). Of particular 
interest are the analogs of the spherical functions on G//C namely the 
A/yV-invariant distributions >F in (9), the so-called conical distributions. In 
contrast to the situation for spherical functions it was natural to conjecture 
that the set of conical distributions in °l^ would be parametrized by W. 
Theorems 4.10, 4.12 give a partial confirmation of this. In order to determine 
these distributions we decompose 2 according to the Bruhat decomposition 
of G. For each 5 G W fix ms G K such that Ad(m5)|a = s. Then if £ = 
msMN, 25 = MNA • £, we have 2 = U5 ( E^25 (disjoint union). If £ G 25 we 
write a(£) for the (unique) A factor in £ = mna(£)' | . Let 2 + (respectively 
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2~) denote the set of positive (negative) roots of g with respect to Q, SQ" (2Q) 
the corresponding sets of reduced roots. If 

(10) Re</A, a> > 0 fora G 2 + n ^ S T , 
then the function £-* e(

is*+spW°ea(0) o n 25, viewed as a distribution on £, is a 
conical distribution ^f

Xs G tf)£. Moreover, if T is the Gamma function and we 
put a0 = a/<a, a>, the mapping 

*->*M-( II r«/\,«0») ^ 

extends to a holomorphic function on a* with values in UD '(2) and each ^A 5 

is a conical distribution in 6DA'(H) [lOd, p. 88]. Let 

* ( * ) - II <A,<*> 

and let e(A)"1 denote the denominator in Harish-Chandra's c-function, 

(H)e(A)- ,= II r ( i ( > a + l + < /A,a 0 >)) r ( | (> a -hm 2 a + </A,a0>)), 

ma and m2a denoting the respective multiplicities. Then we have, by [lOd, p. 
96] and[10g, Theorem 6.1], 

THEOREM 4.10. Let A G a* and assume 

(12) 7r(A)e(A)^0. 

Then the linear combinations ̂ s^wcs^\^ cs e C, constitute all the conical 
distributions in 6DA (£). 

Of the orbits Zs above, exactly one, say £,*, is an open subset of 2, the 
others have lower dimension. For the corresponding distribution ^Xs* we 
have 

THEOREM 4.11. The distribution ^A5* is given by a locally integrable function 
on Z if and only if 

Re«/A,a» > 0 for a G 2 + , 

and by a C °° function on z, if and only if 

</A - p, a0> G Z+ /or a G 2 + . 

For A' of rank one, Hu [14a, b] managed to eliminate the discrete set of A 
which violates condition (12). Since all ^0s (s G W) are proportional, an 
additional conical distribution ^ 0 G 6D0' is needed. It is defined as follows. 
The function ef>(l°zatt» on the open dense subset S5» is not locally integrable 
on S, but the following regularization 

%(<» - £ ( * ( « ) - *0(*))*p(IOif l t t ) ) d t 
where for <£> G ÜD(S), <£>0 is given by <f>0(kaMN) = (j>(aMN)< gives a well-
defined conical distribution in ÜD0'. Defining conical distributions by means of 
the full isometry group G of A" instead of G (this makes a difference only for 
G = SL(2, R)), Hu proved the following result. 
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THEOREM 4.12. If X has rank one the linear combinations c"$?Xs+ + cf<&Xe 

(C^Q + cf<ïr0efor A = 0) constitute all the conical distributions in 6D^(S). 

At the poles of ^Xs* the residues are conical distributions which are certain 
transversal derivatives of ^Xe. For an algebraic approach giving part of 
Theorem 4.12 see Lepowsky [23]. In view of Theorems 4.5-4.6 and the fact 
that the dual Radon transform maps joint eigenspaces of D(G/MN) into 
joint eigenspaces of D(G/K) [lOd, p. 93] it would be natural to consider the 
joint eigenhyperfunctions of D(G/MN). While the necessary adjustment in 
Theorem 4.9 is obvious, one might wonder whether a conical hyperfunction is 
not necessarily a distribution? 

5. Eigenspace representations. In this section we state without proof some 
results on the eigenspace representations for certain classes of homogeneous 
spaces G/K (Problem C in §2). Again we start with the case when G/K is a 
symmetric space of the noncompact type. Since each joint eigenspace con­
tains a spherical function ((2), §4) it is clear that each joint eigenspace has the 
form 

S A ( * ) - {ƒ eC™(X)\Df=PD (A) ƒ for D GD(G/K)}. 

Here A E a* is arbitrary and PD is the polynomial in (4), §3. Let Tx denote 
the representation of G on &X(X) given by (Tx(g)f)(x) = f(g~l • x). Since 
PD is W-invariant we have &sX = Sx, TsX = Tx for all s G W. Using many 
different tools the following result is proved in [10g]. 

THEOREM 5.1. The eigenspace representation Tx is irreducible if and only if 

0 ) e(A)e(-A)^0 

in the notation of (11), §4. 

For the non-Euclidean disk with the Riemannian metric 

ds2 = (l - x2 - y2)~\dx2 + dy2) 

the criterion (1) gives the following: The eigenspace of the Laplacian L with 
eigenvalue 4c(c — 1) is irreducible if and only if c is not an integer. 

Next we consider the case when G/K = Rw (n > 1) and G is the group of 
all isometries. For A G C let SA(R") denote the eigenspace 

&X(R") - {ƒ GC°°(R")|L/- -A 2 / } , 

L being the Laplacian. 

THEOREM 5.2 [10f]. The natural action of G on £>X(R") is irreducible if and 
only ifX^O. 

For A = 0 the harmonic polynomials of degree < k clearly form a closed, 
proper invariant subspace. But for eigenvalue 0 the eigenspace of L is 
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mapped into itself by a transformation r of R" provided L is just quasi-in­
variant under r, i.e., satisfies U = <f>L where <|> is a function (this amounts to 
stability in Lie's sense (§1)). For example the conformai map 

T: z->(az + b)(cz + rf)"1 

of R2 U {oo} satisfies LT = \cz - a\4L. More generally, Qrsted [40] shows 
that if A' is a conformai vector field on R" then the operator 

(2) r,(X)f = Xf- ^^(divX)f / 6 r ( R " ) , 

satisfies 

(3) Lr,(X)f-ri(X)Lf= -(2/n)(div X)Lf 

and X^>i){X) is a representation of the Lie algebra T of conformai vector 
fields on Rn on C°°(R"). By (3) the space £0(R") of harmonic functions is 
^-invariant. We have then the following complement to Theorem 5.2 (cf. 
[10h]). 

THEOREM 5.3. The representation X -» r\{X) of the conformai algebra r on the 
space of harmonic functions is scalar irreducible {that is, the only commuting 
operators are the scalars). 

For a coset space U/K of compact groups K and U the irreducibility 
question for the eigenspace representations is quite easy. 

PROPOSITION 5.4. For compact Lie groups K c U the eigenspace representa­
tions for U/K are all irreducible under the action of U. 

In fact, each joint eigenspace is finite dimensional and can be decomposed 
into a direct sum of [/-invariant subspaces. Each of these contains a spherical 
function so the irreducibility follows from the fact that a spherical function 
on U/K is completely determined by the eigenvalues of D(U/K). 

Next we consider the horocycle space G / MN associated with the noncom-
pact symmetric space G/K. The joint eigenspaces (of distributions) are the 
spaces 6DA'(£) (À E a*) defined in §4. Let rx denote the representation of G on 
°ï\'. A representation r is called conical if there is a fixed vector under 
T(MN); T is called spherical if there is a fixed vector under r(K). The 
following result describes the finite-dimensional subrepresentations of rx (cf. 
[lOd, p. 144]). 

THEOREM 5.5. Let 6DA' G denote the space of G-finite vectors in °DA'. Then: 
(0 %G * (0) ^ </A - p, <*o> e Z + for a e S + (a0 = a/(a, a)). 
(ii) The representation ox of G on ÜDA G is finite dimensional and irreducible. 
(iii) The representations ox are precisely the finite-dimensional irreducible 

conical representations of G. 
(iv) The representations ax are precisely the finite-dimensional irreducible 

spherical representations of G. 
(v) The lowest weight of ax has restriction to a given by — iX H- p. 

For the case when G is complex this can be stated in a somewhat sharper 
form. 
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THEOREM 5.6. Let G be complex semisimple and simply connected and for 
each homomorphism x- D(G//V)—>C let %x be the space of holomorphic 
functions f on G/ N satisfying 

Df=X(D)f MD GD(C/iV), 

Let 77x denote the representation of G on %x. As x varies, TTX runs through all 
the irreducible finite-dimensional holomorphic representations of G. 

For the eigenspace representation TA of the real semisimple G on °i^(£) the 
following irreducibility criterion holds [22a, p. 631], [10g, §12]. 

THEOREM 5.7. TA is irreducible if and only if e(X)e(-X) ^ 0. 

For simply connected nilpotent Lie groups L the eigenspace representa­
tions have been investigated by A. Hole [11]. For a linear function À ^ O o n 
the Lie algebra I of L, let f c I be a subalgebra of maximal dimension 
satisfying X([f, f]) = 0 and put I) = Ï n kernel(A). Let H c L be the analytic 
subgroup corresponding to t). 

THEOREM 5.8 [11]. The eigenspace representations for L/ H are irreducible for 
all nonzero homomorphisms jtx: D(L/ / / ) -*C. The unitary irreducible repre­
sentations of L (cf. [20]) can be realized in this way. 

We finally indicate how the principal series of a semisimple Lie group G 
arises from eigenspace representations on suitable vector bundles over 
G fMN and how the discrete series arises from eigenspace representations on 
suitable vector bundles over G/ K. 

Let 8 be an irreducible unitary representation of M on V8 and X E a*. Let 
T6X denote the space of C00 functions/: G ~> Vs satisfying 

f(gman) = 8(m)~leiiX-p){l^a)f(g) 

and TTÔX the natural representation of G on T8X. These representations form 
the principal series for G. 

Extending 8 to a representation of MN on V8 by 8(mn) = 8(m), we 
consider the associated vector bundle Eô over G/ MN. It is clear from the 
structure of D(G/ MN) ((8), §4), that the members of the principal series are the 
eigenspace representations of D(G/MN) on the section space T(Ed). 

In conclusion we recall that if G has a compact Cartan subgroup it was 
proved by Takahashi [37] for the de Sitter group, by Hotta [12] and Wallach 
[39], in general, that the discrete series of G can be realized on eigenspaces of the 
Casimir operator on the space of square integrable sections of vector bundles over 
G/K. It would be of interest to know the action of the bigger algebra 
DÔ(G/K) on these sections as well as of the algebra DÔ(G/MN) on T(EÔ) 
above. 

Related realizations of the discrete series on nullspaces of the Dirac 
operator on certain vector bundles over G/K were given by Parthasarathy 
[30] and Schmid [34]; this is extended by Wolf in [41] to the representations of 
G which make up the Plancherel measure of G. 
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