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domain element, whereas a change in a single Walsh coefficient is felt 
throughout the domain. 

At this point in time the work appears to be highly developed and rich in 
mathematical elegance. It is not clear what the long term directions of the 
research are, nor what the present implications are. Since the research is 
largely stimulated by the need to solve practical problems in computer design, 
one might measure the impact of the research on present design. The impact, 
unfortunately, has been quite small, and is not likely to improve over time. 
The cost functions on which the research is predicated have turned out largely 
to be unrealistic characterizations of present technology, although they were 
reasonable characterizations of past technology. Practitioners today are able 
to use canonical realizations with or without small improvements from ad hoc 
analysis to design computers, and the costs of nonminimal circuits have been 
very close to the costs of absolutely minimal circuits. The theory no longer has 
to satisfy past constraints and may be driven in new innovative directions. 
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Global variational analysis: Weierstrass integrals on a Riemannian manifold, by 
Marston Morse, Mathematical Notes, Princeton University Press, Prince­
ton, New Jersey, 1976, ix + 255 pp., $6.50. 

The first thing that comes to mind in reviewing a new book by Marston 
Morse on the calculus of variations is that he wrote a book, The calculus of 
variations in the large, forty years ago. The early book gave the foundations of 
what is now called Morse theory. The publication of a new book by Morse on 
the same subject presents an occasion to give some personal perspectives on 
how this mathematics has developed in the last few decades. I say "personal 
perspectives" and indeed, I, myself, have been involved in, and inspired by, 
Morse's mathematics. For example, three of my papers contain the word 
Morse in the title. Another mathematician much influenced by Morse, Raoul 
Bott, was my adviser, and even work of Morse (but not variational theory) 
suggested to Bott the thesis problem he gave me (leading eventually to my 
work in immersion theory). 

Another factor in writing a review like this is that, today, global analysis is 
very much alive, both in mathematics and other disciplines. It may give us 
some perspective to trace the development of one of the main roots of the 
subject. 

Let us see what Morse, in 1934, had to say about global analysis (he used 
the word macro-analysis, then). I quote the full first paragraph of the 
Foreword of his book. 

"For several years the research of the writer has been oriented by a 
conception of what might be termed macro-analysis. It seems probable to the 
author that many of the objectively important problems in mathematical 
physics, geometry, and analysis cannot be solved without radical additions to 
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the methods of what is now strictly regarded as pure analysis. Any problem 
which is nonlinear in character, which involves more than one coordinate 
system or more than one variable, or whose structure is initially defined in the 
large, is likely to require considerations of topology and group theory in order 
to arrive at its meaning and its solution. In the solution of such problems 
classical analysis will frequently appear as an instrument in the small, 
integrated over the whole problem with the aid of group theory or topology. 
Such conceptions are not due to the author. It will be sufficient to say that 
Henri Poincaré was among the first to have a conscious theory of macro-
analysis, and of all mathematicians was doubtless the one who most effectively 
put such a theory into practice." 

Note Morse's acknowledgment of the role of Poincaré in this subject. 
Already in 1885, Poincaré knew of Morse inequalities for a surface. 

Note also how Morse feels that problems (of analysis) nonlinear in 
character are likely to require considerations of topology and group theory. I 
would like to echo this point, which even today, forty years later, has still not 
been digested by some analysts, analysts, for example, who are not willing to 
relinquish their linear spaces and linear space methods to confront nonlinear 
problems. 

Suspicions of geometry and the uses of geometry in analysis have indeed 
deep roots. Even G. D. Birkhoff wrote in 1938, in Fifty years of American 
mathematics, of his " . . . disturbing secret fear that geometry may ultimately 
turn out to be no more than the glittering intuitional trappings of analysis." 
He used the word geometry to include topology or "analysis situs" as it was 
called then. 

The simplest case of Morse theory is just the phenomenon that a differen-
tiable function on an interval with two local minima must have a local 
maximum between the local minima. This "minimax principle", while very 
old, received a big push by G. D. Birkhoff in 1917. It is interesting to see what 
Morse had to say about some of the origins of the global calculus of 
variations. In his obituary of Birkhoff, he wrote (on the minimax principle): 

"In Birkhoffs applications this principle reduces to an existence theorem for 
critical points of an analytic function F(x) of «-variables. If one supposes for 
the sake of definiteness that F is defined over a regular, compact, analytic 
manifold, then, suitably counted, there exist at least Rx + M0 - 1 generalized 
saddle points, where R{ is the linear connectivity of the manifold and M0 the 
number of points (supposed isolated) of relative minima of F. In similar or 
related forms this principle was known and applied by Poincaré, Maxwell, and 
Kronecker, and has an origin even more remote in the past. Birkhoffs bold 
step was to conceive of its application to functions of curves such as the 
integral J. He applied it in the billiard ball problem [26] (motion on a convex 
table) and to obtain closed geodesies on a convex surface." 

Thus, one has here a relation between the analysis, saddle points or 
geodesies, and the topology, "linear connectivities", or more generally, Betti 
numbers. 
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Morse's central contribution was to take these ideas and apply them 
systematically to a functional on the "manifold" of curves joining two points 
to deduce the existence of extremals, especially geodesies. In doing so, he 
developed relations between the critical points and the topology for any 
(smooth, nondegenerate) function on a compact manifold. In particular, it was 
a great accomplishment of Morse, in the years 1925-1930, to have given a 
global geometric abstract base for the variational calculus. To that base we 
proceed. 

A fundamental insight here deals with the problem: How does the topology 
change as a function passes a nondegenerate critical point? To explicate 
matters, let J: 2 -> R be a C00 real valued function defined on a compact 
manifold, ÏÏ. We will suppose that all maps are C00 and use the symbol ÏÏ for 
a manifold for reasons that will become more natural later. A point x in ti is 
called a critical point of / if it has zero derivative, i.e., if DJ(x) = 0. In that 
case the second derivative D2J(x) is an invariantly defined bilinear symmetric 
form Hx on the tangent space Tx of vectors tangent to ti at x. This form is 
called the Hessian and plays an important role in Morse theory. 

Recall that for any bilinear symmetric form /Zona linear space 2T, the index 
is the maximum dimension of a subspace on which H is negative definite. The 
nullity of H is the dimension of the null space, i.e., the set of v in E such that 
H(u,v) = 0 for all u in E. Then H is nondegenerate if its nullity is zero. If H 
is nondegenerate and E is Rn, then there are linear coordinates u on Rn such 
that 

H(u9u) = - 2 K?+ 2 uj. 
/=i i«*+i 

Here k is the index. 
All of these definitions pass over to a critical point. Thus the index of a 

critical point is the index of its Hessian; the critical point is called nondegener­
ate if its Hessian is nondegenerate, etc. A nondegenerate critical point is 
necessarily isolated. One knows more. 

The Morse lemma asserts that if a critical point x of a function J is 
nondegnerate, then there are coordinates u near x to make J quadratic, i.e., so 
that J(u) = Hx(u9u). My own belief is that the Morse lemma, while nice to 
know, is not vital, and in fact Morse theory develops more naturally, more 
conceptually, without it. To understand the topology of a function on a 
manifold, one uses a Riemannian metric to define gradient lines of the 
function. The choice of coordinates in the Morse lemma will not respect this 
metric. On the other hand, simply Taylor's formula already gives sufficient 
local information to do the "handle attaching". 

Perhaps the preceding remark will become clearer as we proceed with our 
story of what happens to the topology as a nondegenerate critical point is 
passed. For any real number a let Ja be the set of all x in Ü with J(x) < a. If 
there is no critical value in the interval [b9c]9 then J~l[b,c] is differentiably 
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isomorphic to a product, J~ (b) X [b,c]. (A critical value is the value of a 
critical point.) 

Now suppose there is exactly one critical point x* with value c, and that x* 
is nondegenerate with index k. How is the topology of Jc+e related to that of 
Jc_e for small enough e? The fundamental result is that Jc+e is Jc_e together with 
a cell (or "handle") of dimension k attached. This handle attaching statement 
has three versions, which relate to three periods in the development of Morse's 
critical point theory; and the last two relate to the application of this theory 
to problems of topology. 

The first of these versions is on the homology level and states the relative 
homology (over the rationals) result: 

dimHk(Jc+e,Jc_e) = 1. 

Recall k is the index of the critical point. 
This result is central in Morse's 1934 book and is used to deduce the 

existence of critical points. These critical points correspond to solutions of 
variational problems, in particular, to geodesies as we shall see later. Thus it 
is used to make a passage from topology to analysis and geometry. 

The second version is a sharpening, explicated by Bott in 1959, which puts 
the theorem on a homotopy level. This result was used by Bott to study the 
homotopy of Lie groups. In particular, he obtained the first proof of the Bott 
periodicity theorems this way. Specifically, the stable homotopy groups of the 
unitary group U and the orthogonal group O satisfy 

*i(U) = vM(U)9 w,(0) - vM(0) all i. 

Here for example one may think of U as the union of U(n) over n = 1, 2, 3, 
. . . and then rç is the ordinary homotopy group. This result was the starting 

point of A>theory. 
Bott's version of handle attaching is the statement that Jc+e is homotopically 

equivalent to Jc__e with a cell Dk of dimension k attached by a homeomorphism 
from the boundary dDk of the cell into the level surface J~[(c — e). The 
homotopy statement yields the homology statement as a corollary. 

The third version of handle attaching is on the diffeomorphism level which 
I believe I was the first to explicate. In fact, this was one very important 
ingredient in my solution of the "higher dimensional Poincaré conjecture", 
work on "handle body theory", and the structure of manifolds. 

To work on the level of differentiable isomorphism, one must thicken Dk to 
bring the dimension up to the dimension of the manifold, say n. Thus, let a k-
handle be Dn~k X Dk. Then the strongest version of handle attaching asserts 
that Jc+e is diffeomorphic to Jc„e with Dn~k X Dk attached by an imbedding of 
Dn~k XdDk into J~l(c - e). The attaching process involves a smoothing at 
the corners. This statement yields the homotopy version as a corollary. 

For my favorite proof of these theorems, one supposes that the manifold has 
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a Riemannian metric (by imposition, if necessary) and uses the flow defined 
by the negative of the gradient of J. At the critical point x*, the linearized flow 
has two invariant subspaces in the tangent space 7^*. One of these is 
contracting under the flow, say En~k, and one is expanding, say Ek (with the 
dimension of Ek equal to k, the index of **). Use these spaces to define a local 
product structure in the manifold near x*; then take small disks Dn~~k, Dk 

about the origins in En"k
9 Ek, respectively. Using Taylor's formula to expand 

J about x*, one can show that the flow on the boundary of Dn~k X Dk has the 
requisite properties to give the attaching statements. The same proof works at 
the homotopy and diffeomorphism levels, but requires slightly more checking 
in the latter case. 

The passage from the homology version of handle attaching to the Morse 
inequalities proceeds most simply via the exact homology sequence of a pair. 

Suppose that there are real numbers, c0 < cx < c2 < • • • < cm, so that 
each interval (cj,Cj+l) contains the value of exactly one critical point of 
J: B -* R and all the critical values are in such intervals. For eachj, one has 
the exact homology sequence of vector spaces over the rational numbers, 
writing J- for Jc, 

-> Ht{Jj_x) -> H&Jj) -> Ht{JpJM) -* H^(Jj^) -* . 

From linear algebra, summing from i = 0 to k yields for each k: 

2 ( -D^ 'd imf l J^ ) - 2 (-l)*~'dmff,(/) 
/=0 J (=0 J 

+ | (-l)*~'dim #,($,.}_,) > 0. 

Summing over,/' and evaluating by the handle attaching theorem gives 

- £ (-l)*-'dimff,(/J + 2 (-1)*"'^ > 0 
1=0 i—O 

where Mi is the Morse type number or the number of critical points of index /. 
Let Bt be the /th Betti number, or dim/^(Q), and since Jm = Î2, we have 

Morse inequalities. 2?_o H ) * " ^ / > Sf-oC"1)*"'^/» «ach k = 0, 1,2, 

By adding these inequalities for k and k - 1, we get 
Simple Morse inequalities. Mk > Bk, k = 0, 1, 2, . . . . 
In the preceding discussion we have assumed that different critical points 

took different values; a minor extension in the handle attaching argument can 
remove that hypothesis. We have also assumed that all of the critical points of 
J were nondegenerate. Such functions are called Morse functions. 

How general are Morse functions? Morse has in his 1934 book a prototype 
of the theorem that Morse functions form an open and dense set among all 
C00 functions. This result is now centrally imbedded in transversality theory 
and the theory of singularities of maps à la Whitney, Thorn and Mather. 
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Sard's theorem that with enough differentiability the values of critical points 
form a set of measure zero is basic in this development and it is no accident 
that Sard was a student of Morse. 

It is important to remark that a complement to Morse's work was 
developed, already by 1930, by Lusternik and Schnirelmann in the Soviet 
Union. These mathematicians gave a global existence theory for critical points 
without making use of nondegeneracy hypotheses. 

What we have described above is still in the finite dimensional and abstract 
realm, thus twice removed from Morse's contributions to the study of 
geodesies. But before we turn to that study, we give a couple of ways this finite 
dimensional theory has made itself felt in analysis in the domain of our own 
experience. 

One way is in dynamical systems, where starting from a Morse function J 
on a Riemannian manifold, one obtains a differential equation with a rather 
simple structure. The negative of the gradient vector field of / has the property 
that along solutions (of dx/dt = — grad/(x)), J is never increasing. Thus the 
dynamical behavior permits no nontrivial periodicity or recurrence. Further­
more, the zeroes of this differential equation, coming from a nondegenerate 
critical point, possess a certain local robust character. If one adds a second 
condition of transversality, that the asymptotic sets (the "stable and unstable 
manifolds") of these zeroes intersect transversally, one can obtain such 
properties globally. Via this route is the result I obtained with Jacob Palis, that 
every compact manifold supports a structurally stable dynamical system (so 
that the "phase portrait" or qualitative structure persists under perturbations). 
Moreover, it was the interplay between dynamical problems and topology that 
helped lead me to the handlebody results mentioned earlier. 

In this vein, it is worth remarking that the catastrophes of Thorn deal with 
bifurcations of gradient dynamical systems. 

A second example is in celestial mechanics where one can show that the 
relative equilibria in the Newtonian «-body problem correspond to critical 
points of the Newtonian potential function on complex projective space, 
properly interpreted. Morse theory of this function suggested to Julian 
Palmore the existence of new relative equilibria in the 4-body problem which 
he found. 

Let us turn now to the variational theory of Morse, the ultimate object of 
the abstract theory previously discussed and the subject proper of the book 
under review. The prinicpal example is the global study of geodesies on a 
manifold. Let us see how this goes. 

Let M be a Riemannian manifold. Recall that this equips each tangent 
space Tx = TX(M), x in M, with a norm written || 1̂  or sometimes simply || ||, 
defined by an inner product ( , )x in Tx. One can define the length 1(a) of a 
curve a: [a,b] -» M by 

/*b dot 
K<x) = J l|â(OII* where à = -T-. 
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From this, define a metric on M by letting d(p, q) equal the infimum of 1(a) 
over all curves a joining p to q. This is indeed a metric. We will assume that 
M is complete for this metric. 

On M, let points P, Q be given. Denote by S = ÜPQ(M) the loop space, or 
set of all (C00 ) curves on M from P to Q. That is, 

Ö = {a: [0,1] -* M|a(0) - P,a(l) = 2 ) . 

The energy is the map / : fi -> /? given by /(a) = JJ) ||â(/)|| dt. 
Let us look at the "first variation formulae" of this calculus of variations 

problem defined by 7. The space of variations of a, or the "tangent space" of 
Q at a, is the linear space defined by 

{r,: [0,1] -* T(MMt) G Ta{t)(MU(0) « 0,7,(1) « 0}. 

One can think of Ta(Q) as the space of vector fields along the curve a. 
One can think of geodesies as being like "critical points" of J : fl -» /?. It 

would be natural to define the derivative of / at a E S, DJ(a): Ta(Q) -» JR as 
follows. 

In case M is /*w, then the tangent bundle T(M) is MX Rn and one can 
proceed by letting F: T(M) -» £ be defined by F(JC,JC) = \\x\\x for x e Tx. 
Then for <\ E 3̂ (12) let 

r1 dF dF 

where dF/dx = (8/r/3x)(a(/),à(0) is a linear map on ƒ?" for each f. Then if 
A/(a) = 0, 

WWW " Jo' (If " l e ) ' " ° for a11 « e W 
So Euler's equation for a is satisfied or: 

Euler's equation: d/dtdF/dx(a(t),à(t)) — dF/dx(a(t\à(t)) = 0. 
If M is not Rn

9 then one has the argument and equation valid in each 
coordinate chart, or one could use the covariant derivative. 

Recall that a curve a: [a, b] -» M is a geodesic if it locally minimizes length. 
Then the above kind of derivation shows that a in Î2 is a geodesic if and only 
if a is a solution of Euler's equation in each coordinate chart. Thus the 
geodesies are indeed like critical points of ƒ. 

The earliest part of our review motivates the question as to whether there 
are the concepts of index and nullity for a geodesic a. In the "second 
derivative" of J at a, as before, one can find an answer. In a coordinate chart 
of M9 it is natural to write for D2J(a)9 the second derivative of J at a, the 
symmetric bilinear form on Ta(Q) defined by 

D2J(a)(V,t) = Ha(%0 - JT1 JkfoO + FXX(V,S) + FXX(U) + Fxx(Ù)dt. 
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Here, TJ, £ E Ta(iï) and / ^ = Fxx(a(t)9 à(t)) is the second partial derivative of 
Fas a bilinear form on Ta^(M) = Rn

9 etc. 
One defines the index and nullity of a simply as the index and nullity of Ha 

on Ta(ü). Furthermore, a is nondegenerate if i/a is. 
Define an inner product on Ta(ü) via that on M: i.e., 

M ) « - /J (u(0,€(0)«(o* * € E W 
Using integration by parts, one obtains that for all TJ, £ in j£(fi), 

where 

Lrj * "iS^ + ^ ^ + ^ ~ ^ 
is the Jacobi (linear) differential operator. 

One may express L invariantly in terms of the Riemann curvature tensor. 
Say that P and Q are conjugate along a if LTJ = 0 for some nonzero 

7) E Ta(ÇlPQ). The multiplicity of this conjugacy is the dimension of the linear 
space of such TJ. 

The Morse index theorem asserts that the index of a is equal to the number 
of points a(t)9 0 < t < 1, such that a{t) is conjugate to a(0) along a, counting 
conjugate points with multiplicity. I like to think of this result as belonging to 
the spectral theory of differential operators. 

To prepare us for his main result, Morse shows that for prescribed P in M, 
if Q is excluded from a set of measure zero in M, then all the geodesies in ÜPQ 
will be nondegenerate. Thus for such g, J is like the Morse functions defined 
earlier. We may call such a pair (P, Q) a nondegenerate pair. 

Now we may state the following basic theorem of Morse in the calculus of 
variations. 

THEOREM. Let (P, Q) be a nondegenerate pair on a complete Riemannian 
manifold M. Let Bi denote the dimension of the homology group H^Qp^iM)) 
(over the rationals) of the loop space. Let Mi denote the number of geodesies 
joining P to Q (in Ü) of index 1. Then the Bi9 M: satisfy the Morse inequalities 

M0 > fi0, Mx - M0 > JS, - 5 0 , etc. 

as before. 

Morse proves the theorem by taking a sequence of finite dimensional 
manifolds which approximate S2 and applying the earlier abstract theory. 
These approximating manifolds are manifolds of piecewise geodesic curves. 

As a particular case of this theorem, Morse in his first book takes M to be 
homeomorphic to the «-sphere Sn. By applying the same Morse inequalities to 
the standard Riemannian «-sphere in Rn+l, he is able to compute the Bi9 Betti 
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numbers of the loop space, which are given by (say for n > 2), B{ = 1 for 
/ = 0, n — 1, 2(/2 — 1), 3(H — 2), . . . and zero otherwise. Therefore, he con­
cludes that for an arbitrary Riemannian structure on Sn, the existence of 
geodesies of index 0, n - 1, 2{n - 1), . . . joining P to Q. 

Applications of this basic theorem to a more general class of manifolds were 
hampered by lack of knowledge of the homology of loop spaces. In fact, the 
breakthrough on this problem didn't come until 1951 with Serre's thesis. Using 
the Leray spectral sequence, Serre showed that Ht(ü(M)) ¥* 0 f or a sequence 
of / going to infinity for a compact manifold M with finite fundamental group. 
From the Morse theorem, this is enough to conclude that on any compact 
Riemannian manifold, any nondegenerate pair (P, Q) is joined by an infinite 
number of geodesies. 

The history of the problem of closed geodesies on a manifold homeomorphic 
to a sphere Sm is one with fine achievements; it is also a subject over which 
many mathematicians have stumbled. For example, in the foreword of his 
1934 book, when discussing Poincaré's work on existence of closed geodesies 
on a convex surface, Morse says the validity of Poincare's reasoning "has been 
questioned". Explicit objections are presented by Morse in his Chapter 9. 
These last two chapters of his book in fact are devoted to showing the 
existence of m(m + l)/2 closed geodesies of a special kind on a Riemannian 
manifold homeomorphic to Sm. Yet this work of Morse is in error, as was 
pointed out by A. S. Svarc in 1960. Bott in 1954 gave a new proof which again 
was in error as Svarc noted. 

Some successes in this line have been accepted. Lusternik and Schnirelmann 
(1929) showed the existence of three closed geodesies without self-intersection 
on a surface homeomorphic to S2. G. D. Birkhoff in 1927 showed that a 
manifold homeomorphic to Sn had at least one closed geodesic. 

In the last two decades, these questions have been pursued with very 
substantial success, especially by Soviet and German mathematicians. Klin-
genberg in a recently printed set of notes (Bonn, 1976) gives an account of the 
subject of closed geodesies complete with history. These notes include a proof 
of his newest theorem: On every simply connected manifold there exist 
infinitely many closed (prime) geodesies. (Let us hope ) 

At this point, we add that two expositions of Morse theory have probably 
been much more widely read than Morse's original treatise. These are the 
books of Seifert and Threlfall and of Milnor. Especially for those who have 
learned their mathematics in recent decades, Milnor's book is to be recom­
mended. 

The language and concepts in the calculus of variations since 1736 (Euler) 
have suggested that extremals could be thought of as critical points of the 
functional, length, area, energy, etc. Our review emphasizes this analogy. In 
fact, this analogy is actual. The geodesies are critical points of the energy. One 
can put a manifold structure on 2 in such a way that the energy J becomes a 
differentiable map on Q and an abstract Morse theory on infinite dimensional 
manifolds can be developed which yields Morse's theorems for geodesies. This 
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is what Palais and I did in 1962-1964. One obtains a unification of the first 
and second parts of the material of our review. For example, a geodesic is 
literally a critical point, the definition of Hessian and index of an abstract 
critical point apply directly to give these notions for geodesies as a special 
case. One needs no longer to approximate £2 by finite dimensional manifolds 
of broken geodesies. The abstract theory already applies to Î2. 

Two contributions had made the way easier for us. First, Eells had put an 
infinite dimensional manifold structure (locally Hilbert or locally Banach) on 
certain function spaces in 1958. Secondly, Lang did the foundations of 
differential topology for Banach manifolds in 1962. Then Ralph Abraham, 
Palais, and I, in 1962, worked out systematically some theory of manifolds of 
function spaces and properties of manifolds of function spaces. 

The idea for this way of doing Morse theory is to replace the compactness 
condition of 12 by a compactness condition on the map ƒ, a condition which 
Palais and I called Condition C. 

More precisely, let 0 be a complete Riemannian manifold, no longer 
compact or even finite dimensional, but defined as before with coordinate 
charts as open sets in Hilbert space. Let / be a (smooth) function on Q which 
is bounded below, has nondegenerate critical points (of finite index for 
simplicity) and satisfies: 

CONDITION C. If a, in Q is a sequence with J{ai) bounded and such that 
||/)/(a/)|| tends to zero, then at has a convergent subsequence. 

The result is that for such a function, the Morse inequalities are true, 
relating the type numbers defined by critical points of J and the Betti numbers 
of Q. The proof is essentially that given above via handle attaching. 

Now for the Morse theory of geodesies, one only has to show that the 
energy / on the loop space Ï2 satisfies the above properties, with an appropriate 
manifold structure on 12. Palais and I used the Sobolev completion of £2, with 
norm defined by Û and first derivatives in L2. Actually it was Palais who wrote 
out the theory for this case in his article in Topology in 1963. 

Some of the new results on closed geodesies mentioned earlier were proved 
using Condition C as above. 

Recently, Tony Tromba seems to have found a drastic modification of 
Condition C, and developed a Morse theory for geodesies using infinite 
dimensional manifolds with a space of much smoother curves. 

Now I would like to spend the last few words of this review on the global 
variational calculus for more than one independent variable. It was in fact just 
this problem that led me into infinite dimensional manifolds in the early 
sixties. It remains a problem; although very recently, especially through the 
work of Tromba and Karen Uhlenbeck, there seem to be signs of progress. 

The most interesting case for more than one independent variable is 
minimal surfaces. In the theory of Plateau's problem, I had been intrigued by 
a result of Morse-Tompkins and Shiftman in 1939. Their theorem asserted that 
if a Jordan curve in R3 spans two stable minimal surfaces, then it spans a third 
of unstable type. This was suggestive of a Morse theory for Plateau's problem. 
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In the sixties I tried without success to find such a theory, or to imbed the 
Morse-Tompkins-Shiffman result in a conceptual general setting. Tromba and 
Uhlenbeck may now have succeeded in initiating a development of calculus of 
variations in the large for more than one independent variable. 
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Noncommutative ring theorists have long been tantalized by the method of 
localization used so easily and successfully by their commutative colleagues. 
It is unfortunate, yet typical, that results and techniques which are almost 
trivial for commutative rings turn out to be either false or impossible for 
noncommutative rings. Stenström's Rings of quotients records the attempts at 
developing a comprehensive, general technique of localization for noncommu­
tative rings. 

The study of quotient rings for noncommutative rings goes back to the early 
1930s with the question in van der Waerden's first edition about whether 
noncommutative integral domains could be embedded in division rings. Ore, 
in 1931, found a criterion (the "Ore condition") for an integral domain to have 
a division ring of fractions: Given nonzero elements a and b, there exist 
nonzero c and d such that ac = bd. Independently, Wedderburn, in 1932, 
proved directly, by a similar procedure, that Euclidean domains have division 
rings of fractions. 

The subject attracted little interest until the early fifties. There was, 
however, an important development due to Asano [1]. Asano's result was of 
less interest than his method, both of which will be described here. If R is a 
commutative ring and S a multiplicatively closed subset of non-zero-divisors, 


