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Let A be a commutative ring with identity. By an inner product A-space we 
shall understand, as in [6], a pair (P, q), where P is a finitely generated projective 
A -module and q is a symmetric bilinear form P x P —> A which is nonsingular 
(i.e. induces an isomorphism P - ^ P*). If B is a commutative A -algebra we obtain 
an inner product i?-space (B ®A P, B ®A q). Inner product ^-spaces isomorphic 
to one of these will be said to be extended from A. 

The quadratic analogue of Serre's conjecture is the affirmation of: 

Suppose A is a polynomial algebra K[XX, . . . , Xn] over a field K. 

Is every inner product A-space extended from Kl 

This question is motivated by the following evidence. 
(1) Serre's conjecture that projective A -modules are free, hence extended 

from K, has recently been proved by Quillen and Suslin (cf. [4]). Moreover this 
immediately implies that "symplectic A -spaces" are extended from K (see e.g. [1, 
Chapter IV, (4.11.2)]). 

(2) If Char(K) =£ 2 then a theorem of Karoubi [7, Theorem 1.1] implies 
that every inner product A -space is stably isomorphic to one extended from K. 

(3) A theorem of Harder (see [8, Theorem 13.4.3]) gives an affirmative 
response to (QS) for n = 1. 

A major tool in Quillen's proof of Serre's conjecture is: 

QUILLEN'S LOCALIZATION THEOREM [11]. Let A be a commutative ring, 
let T be an indeterminate, and let M be a finitely presented A [T]-module. If 
for all maximal ideals m of A, Mm is extended from Am , then M is extended 
from A. 

(4) The analogue of Quillen's localization theorem for inner product spaces 

has been proved in [3]. 

The other main tool Quillen uses is: 

HORROCK'S THEOREM [5]. Let A be a local ring and let P be a finitely 

generated projective A[T] -module. IfP extends to a locally free sheaf on P^> 
then P is extended from A (hence free). 
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It is natural then to ask: 

(QH) Is the analogue of Horrock's theorem for inner product spaces validl 

We here answer (QS) and (QH) negatively, with the following example. Let 
A = R[X, Y]. Consider the symmetric 4 x 4 matrix over 

A,S= It 
/? a 

where 

' a , 
U + Y2{\ 4- X2) XY(l + Y2) 

XY(l + Y2) l+X2Y4 

(t denotes transpose), and 

/ 0 Y(l +X2Y2)\ 

Let q be the bilinear form on P = A4 with matrix S relative to the natural basis 
of^l4 . 

THEOREM. (1) (P, q) is an inner product space over A = R[X, Y] which 

is not extended from R. 
(2) For each prime ideal pofA, the inner product A^-space (P^, q^) is 

extended from R. 
(3) (P, q) extends to a sheaf of inner product spaces over PR[X]> yet for 

some prime ideal \) of R[X], the inner product R[X] ^[Y] -space (P^, q^) is not 
extended from R[X] P . 

REMARKS, (a). The matrix S is derived from the hermitian matrix H = 
a + i(l over C[X, Y], which was discovered from an investigation of the classifi­
cation of the rank 1 projective H[X, Y] -modules (H = quaternions) in terms of 
hermitian matrices, established in [9] , [10]. The analogue of the above theorem 
for the hermitian C [X, Y] -space defined by H is also valid. 

(b) The matrix S has entries in Z[X, Y], and det(S) = 16. Thus (P, q) is 
extended from an inner product space over Z[l/2] [X, Y]. 

(c) If one considers quadratic forms rather than symmetric bilinear forms 
the analogue of (QS) has a negative response (in characteristic 2 of course) al-
already for n = 1 (see [7, p. 318]). 

(d) Bass [2] has investigated (QS) when K is algebraically closed. 

(e) It follows from Harder's theorem (3) that the answer to (QH) is trivially 
in the affirmative if A is a field. Our theorem shows that the answer is negative 
already for the discrete valuation ring R[^]^. 

(f) The proof of the above theorem will appear elsewhere. 
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