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Given a modulus m = 2 and a multiplier A relatively prime to m, a sequence
Yo V1> - - - of integers in the least residue system mod m is generated by the
recursion y,, . ; = Ay, (mod m) for n =0, 1, ..., where the initial value y, is
relatively prime to m. The sequence X, x,, . . . in the interval [0, 1), defined
by x, =y,/m forn=20,1,...,is then a sequence of pseudo-random numbers
generated by the linear congruential method. The sequence is periodic, with the
least period 7 being the exponent to which A belongs mod m.

For fixed s > 2, consider the s-tuples X, = (x,,, X, 11, -« + s Xp4-1), B =
0,1,.... We determine the empirical distribution of the s-tuples x,, x,, . . .
and compare it with the uniform distribution on [0, 1]. The original sequence
Xg, Xy, . . .of linear congruential pseudo-random numbers passes the serial test
(for the given value of s) if the deviation between these two distributions is
small. To measure this deviation, we introduce the quantity

Dy =sup |Fy(J) — V() forN=>1,
J

where the supremum is extended over all subintervals J of [0, 1]%, Fp(J) is N™!
multiplied by the number of terms among x,, X, . . . , Xy_, falling into J, and
V (J) denotes the volume of J.

For a nonzero lattice point h = (h,, . . ., hy) € Z°, let r(h) be the absolute
value of the product of all nonzero coordinates of h. We set

ROMm )= 2 (@)™,
h (mod m)
h - A=0(q)
where the sum is extended over all nonzero lattice points h with —m/2 <h; <
m/2for1 <j<sandh-X=h; + b\ ++ ++ + kX1 =0 (modq). For
prime moduli m, a somewhat simplified version of our result reads as follows.

THEOREM 1. For a prime m and for a multiplier \ belonging to the ex-
ponent T mod m, we have
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— s
D, << + min <1@><% log m + %> + %R(S)O\,m,m).

The second term in the upper bound is nonincreasing as a function of 7
and so becomes minimal for 7 = m — 1. Values of A that minimize R\, m, m)
are of fundamental importance in the theory of good lattice points in the sense
of Korobov and Hlawka (see [2, Chapter 2, §5]). We conclude that a multiplier
X is favorable with regard to the s-dimensional serial test if A = (1, \, ..., A1)
is a good lattice point mod m (or, equivalently, A is an optimal coefficient
mod m) and A is a primitive root mod m. It can be shown that there exist
primitive roots A, mod m for which R(’)()\o, m, m) is of the order of magnitude
m~log*m loglog m.

For an odd prime power m = p®, p prime, & > 2, and for |[\| > 1, let
7(p) be the exponent to which A belongs mod p and let § be the largest integer
such that pf divides \7®) - 1,

THEOREM 2. For an odd prime power modulus m = p® with o > 8, we
have

s 1
242 R(s) o—p
D < +2R A, m, p*").
THEOREM 3. If m = 2% with o = 3 and X\ =5 (mod 8), then
s 1
D4 = ps) a—2
D, < +5R A, m, 2%7%),
If m = 2% with a = 4 and \ = 3 (mod 8), then

D, << 4+ LROa, m, 2071y + -1 RO, m, 2273) - ROQ\, m, 22-2)).

m 2

22

Since the upper bounds in Theorems 2 and 3 can be estimated in terms of
RO\, m', m") with a suitable m' < m, the remarks following Theorem 1 apply,
mutatis mutandis, to prime power moduli.

For computational purposes, it is more convenient to replace R (\, m, m)
by the quantity

P @, m) = min r(h),
h

where the minimum is extended over the range of lattice points used in the def-
inition of R\, m, m).

THEOREM 4. For any dimension s 2 2 and for any integers m = 2 and
A\, we have
RO\, m, m) < p~(log 2)! ~*((2 log m)* + 4(2 log my*~1)

+ p—l2s+l(2s-—2 _ l)<

where p = p®)(\, m) and k = [(log m)/log 2] .

k+s-2>
s—1 ’
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There exists an interesting relationship between the two-dimensional serial
test and continued fractions. It is based on the fact that R(*)(X, m, m) can be
estimated in terms of the partial quotients in the expansion of A/m into a finite
simple continued fraction. As a consequence, one obtains that X is favorable
with regard to the distribution of pairs whenever these partial quotients are small.
This is in accordance with results of Dieter [1] concerning the case s = 2.

The proofs of Theorems 1, 2 and 3 depend on estimates for exponential
sums with linear recurring arguments established in [3]. The case of inhomo-
geneous linear congruential pseudo-random numbers and the serial test for parts
of the period can be treated by similar techniques (see [5]).

Details and proofs, as well as further results, will appear in [4].
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