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ABSTRACT. I introduce a theory of noncommutative bounded pertur­
bations of Lie algebras of unbounded operators. When applied to group repre­
sentations, it leads to an analytic embedding of the dual object of some semi-
simple Lie groups into the bounded operators on corresponding Hubert spaces 
of Â>finite vectors. 

1. Introduction. I announce a general theorem on analytic continuation 
of group representations which is based on perturbation theory for linear opera­
tors. This result is a contribution of the author to a series of joint results with 
R. T. Moore reported in detail in [3]. Applications of the theorem to quasi-
simple Banach representations of SL(29 R), due to Moore, will be announced 
separately by him. The theorem introduces a perturbation theory for representa­
tions of Lie groups which generalizes the classical perturbation theory (due to 
R. S. Phillips [2, p. 389]) for one-parameter (semi) groups of bounded linear 
operators on a Banach space. Let {n(t): - ° ° < ^ < o o } b e such a strongly contin­
uous one-parameter group (C0 group) acting on a Banach space E. Let A be the 
infinitesimal generator of n, and let Ube a "small" (bounded, say) perturbation 
of A, B = A 4- U. Then B generates a C0 group {n^t)} on E, and this group 
depends analytically on U (in a sense which is specified in [2, p. 404]). In my 
theorem the real line R is replaced by a Lie group G, and A is replaced by a lie 
algebra L of unbounded operators in E. U is going to be a tuple (Ux, . . . , Ur) 
of bounded operators. In that way I obtain a surprisingly simple analytic contin­
uation picture for a wide class of induced representations, and other unitary and 
nonunitary representations. 

2. Assumptions. I first restrict the class of perturbations U to be consid­
ered. In order to make sure that itjj is a representation of the same group for 
all U, I assume that the corresponding infinitesimal operator Lie algebras Lv are 
all algebraically isomorphic. 

Let D be a linear space. Let 21(D) be the algebra of linear endomorphisms 
of D. It is also a real Lie algebra when equipped with the commutator bracket, 
[A, B] =AB- BA for A, B G 81(D). The Lie algebra L generated by a subset 
5 of 21(D) is defined to be the smallest real Lie subalgebra of 21(D) which contains 
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S. (The elements in L are real linear combinations of elements in S and com­
mutators, possibly iterated, of such elements.) 

Let L0 be a finite-dimensional lie subalgebra of 2t(D), and let A = (At> 

• • •, Ar) be a basis for L0. The order of the operators Ak is essential only when 
addition of operator tuples is performed: A + U = B with Bk = Ak + Uk and 
Uk E 21(D) for 1 < k < r. I consider r-tuples £/ with the property that the Lie 
algebra Lu generated by A + Uis algebraically isomorphic to some fixed finite-
dimensional Lie algebra 3 for all U: L ^ ^ 9 . The set of such r-tuples is denoted 
by II. Then there are simply connected Lie groups G (resp. G0) with Lie algebras 
9 (resp. g0) such that L0 « 90-

I restrict the class U of perturbations further. Let 11*11 be a fixed norm on 
D. Put lbcll0 = Ixl and \\x\\n = max{IU/l • • • Ainxh 0<ik<r} for x G D 
and n = 1, 2, . . . . (Define A0 to be the identity I on D.) An element V G 
?I(D) is said to be II*IIn-bounded if there is a finite constant cn such that II Vx\\n 

< cn \\x\\n for all x G D , Let Dn be the completion of (D, H I J for n = 0, 1, 
. . . . Put D0 = E. I assume that the operators Ak are closable when viewed as 
unbounded operators in E. Hence Dx C E (cf. [3]). If Fis II*Il0-bounded, it 
extends to a bounded operator on E, VEL(E). Let KG 21(D) be II-Il0-bounded. 
Then Fis II- Il n -bounded for given n iff the commutators [Aix, [Ai2, . . . , [Ain, V\ 
. . . ] ] are II- II0-bounded for all i (0 < ik < r). 

Consider the following subset (/ of U: U= (Ul9... ,Ur) belongs to 1/ if 
and only if each Uk is 11-Il0-bounded and one of the following two conditions is 
satisfied: 

(i) each Uk is II-Unbounded for all n\ or 
(ii) {Ak + Uk} is a basis for Lv and each Uk is II-Ilx-bounded. 

3. THE THEOREM. Let L0 C 21(D) be an operator Lie algebra, A - (At, 
• • •, Ar)a basis for L0, and let the class 1/ of bounded perturbations be as de­
scribed above. Suppose that L0 exponentiates to a C0 representation n ofG0 

onE. 
(a) Then Lu exponentiates to a C0 representation of G on E for all C/G I/. 

We denote the exponential by nw 

(b) Let ÇI be a complex domain (in one or several dimensions). Let z —> 
U(z) = (U^z), . . . , Ur(z)) be an analytic function which is defined on Q, and 
has its range in I/. Then ^u(z) *5 an<dytic as a function of zy i.e., z —• nu(z)^ 
is analytic for all g E G. 

(c) The representations n and nv have the same space of C°°-vectors for 
all Ue I/. 

REMARK. A suitable class of analytic perturbations U gives representations 

tiu which have the same space of analytic vectors as 7r. 
The proof is based on two exponentiation theorems due to the co-authors of 
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[3]. I state those theorems as lemmas here. They are significant improvements 
of results announced in [4], and appear below for the first time in their strength­
ened form. 

LEMMA 1. Let D be a normed linear space, and E the corresponding com­

pletion. Let L C U(D) be a finite-dimensional Lie algebra. Suppose L is gener­

ated (in the Lie sense) by a subset S such that every A ES is closable and the 

closure A generates a C0 group {rr(r, A): t G R} C L(E). 

IfD is invariant under n(tf A) for teR and AGS, and t—+ lBir(t, A)x\\ 

is locally bounded for all By AGS and x G D, then L exponentiates. 

LEMMA 2. Let L and S be as above. (This means that we have C0 groups 
{n(t, A)} for A G S, and there are finite constants coA such that 

supe""" , a ;^||7r(fM)ll<<«.) 

Let Bl9 . . . ,Bd be a basis for L Put B0 = I, and 

\\x\\t = max{||£.*||: 0<i <d} 

for x G D. 
Suppose each A G S satisfies the condition: (GD) There are complex num­

bers X± such that Re X+ > coA + lad A I, Re X_ < ~ooA - lad A I, and the 

ranges of\±I-A are W-W^ense in D. Then L exponentiates. 

PROOF SKETCH (a). Suppose L0 exponentiates to a representation ir. Let 

UG I/, and suppose that (i) holds. Then one may apply bounded Phillips per­
turbations to each of the spaces Dn = Dn(n) (cf. [1, Proposition 1.1]) and con­
clude that each Bk = Ak 4- Uk generates a C0 group 7t(t, Bk) which leaves D^ 
invariant. So Lemma 1 applies to Lu, with D replaced by D^. 

If (ii) holds, then apply Lemma 2 to L^. Bounded Phillips perturbation in 
Dx shows that 7r(t, Bk) restricts to a C0 group in L(DX). Condition (GD) is a 
simple consequence of this. 

REMARK. The lemmas are hard to apply directly to operator lie algebras 
that arise in applications. Fortunately many of these can be shown to be pertur­
bations of a base-point Lie algebra to which the lemmas easily apply. 

At this point I have verified, using the theorem, that the dual G of the 3-
or the 15-dimensional conformai group is analytically embedded via rtu —•> U in 
B(H) for a common Hubert space H. The range consists of operators which are 
linear combinations of bounded shifts modulo the compacts (and occasionally 
Hübert-Schmidts). This gives new and simple metrics on G, and thus realizes ideas 
that were recently suggested to me by Professor I. E. Segal. 
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