## PERTURBATION AND ANALYTIC CONTINUATION OF GROUP REPRESENTATIONS

BY PALLE T. JØRGENSEN<sup>1</sup>

Communicated by C. Davis, July 6, 1976

ABSTRACT. I introduce a theory of noncommutative bounded perturbations of Lie algebras of unbounded operators. When applied to group representations, it leads to an analytic embedding of the dual object of some semi-simple Lie groups into the bounded operators on corresponding Hilbert spaces of K-finite vectors.

- 1. Introduction. I announce a general theorem on analytic continuation of group representations which is based on perturbation theory for linear operators. This result is a contribution of the author to a series of joint results with R. T. Moore reported in detail in [3]. Applications of the theorem to quasisimple Banach representations of  $SL(2, \mathbb{R})$ , due to Moore, will be announced separately by him. The theorem introduces a perturbation theory for representations of Lie groups which generalizes the classical perturbation theory (due to R. S. Phillips [2, p. 389]) for one-parameter (semi) groups of bounded linear operators on a Banach space. Let  $\{\pi(t): -\infty < t < \infty\}$  be such a strongly continuous one-parameter group  $(C_0 \text{ group})$  acting on a Banach space E. Let A be the infinitesimal generator of  $\pi$ , and let U be a "small" (bounded, say) perturbation of A, B = A + U. Then B generates a  $C_0$  group  $\{\pi_{\mathcal{D}}(t)\}$  on E, and this group depends analytically on U (in a sense which is specified in [2, p. 404]). In my theorem the real line R is replaced by a Lie group G, and A is replaced by a Lie algebra L of unbounded operators in E. U is going to be a tuple  $(U_1, \ldots, U_r)$ of bounded operators. In that way I obtain a surprisingly simple analytic continuation picture for a wide class of induced representations, and other unitary and nonunitary representations.
- 2. Assumptions. I first restrict the class of perturbations U to be considered. In order to make sure that  $\pi_U$  is a representation of the same group for all U, I assume that the corresponding infinitesimal operator Lie algebras  $L_U$  are all algebraically isomorphic.

Let D be a linear space. Let  $\mathfrak{U}(D)$  be the algebra of linear endomorphisms of D. It is also a real Lie algebra when equipped with the commutator bracket, [A, B] = AB - BA for  $A, B \in \mathfrak{U}(D)$ . The Lie algebra L generated by a subset S of  $\mathfrak{U}(D)$  is defined to be the smallest *real* Lie subalgebra of  $\mathfrak{U}(D)$  which contains

AMS (MOS) subject classifications (1970). Primary 47D10, 47A55.

<sup>&</sup>lt;sup>1</sup>Sponsored by Odense University, Denmark.

S. (The elements in L are real linear combinations of elements in S and commutators, possibly iterated, of such elements.)

Let  $L_0$  be a finite-dimensional Lie subalgebra of  $\mathfrak{U}(D)$ , and let  $A=(A_1,\cdots,A_r)$  be a basis for  $L_0$ . The order of the operators  $A_k$  is essential only when addition of operator tuples is performed: A+U=B with  $B_k=A_k+U_k$  and  $U_k\in\mathfrak{U}(D)$  for  $1\leqslant k\leqslant r$ . I consider r-tuples U with the property that the Lie algebra  $L_U$  generated by A+U is algebraically isomorphic to some fixed finite-dimensional Lie algebra g for all U:  $L_U\approx g$ . The set of such r-tuples is denoted by g. Then there are simply connected Lie groups g (resp. g0) such that g10 such that g21 such that g22 such that g33.

I restrict the class U of perturbations further. Let  $\|\cdot\|$  be a fixed norm on D. Put  $\|x\|_0 = \|x\|$  and  $\|x\|_n = \max\{\|A_{i_1} \cdots A_{i_n}x\| \colon 0 \le i_k \le r\}$  for  $x \in D$  and  $n = 1, 2, \ldots$  (Define  $A_0$  to be the identity I on D.) An element  $V \in \mathfrak{U}(D)$  is said to be  $\|\cdot\|_n$ -bounded if there is a finite constant  $c_n$  such that  $\|Vx\|_n \le c_n \|x\|_n$  for all  $x \in D$ . Let  $D_n$  be the completion of  $(D, \|\cdot\|_n)$  for  $n = 0, 1, \ldots$ . Put  $D_0 = E$ . I assume that the operators  $A_k$  are closable when viewed as unbounded operators in E. Hence  $D_1 \subset E$  (cf. [3]). If V is  $\|\cdot\|_0$ -bounded, it extends to a bounded operator on E,  $\overline{V} \in L(E)$ . Let  $V \in \mathfrak{U}(D)$  be  $\|\cdot\|_0$ -bounded. Then V is  $\|\cdot\|_n$ -bounded for given n iff the commutators  $[A_{i_1}, [A_{i_2}, \ldots, [A_{i_n}, V], \ldots]$ ] are  $\|\cdot\|_0$ -bounded for all I (0 I is I in I in

Consider the following subset V of U:  $U = (U_1, \ldots, U_r)$  belongs to V if and only if each  $U_k$  is  $\|\cdot\|_0$ -bounded and one of the following two conditions is satisfied:

- (i) each  $U_k$  is  $\|\cdot\|_n$ -bounded for all n; or
- (ii)  $\{A_k + U_k\}$  is a basis for  $L_U$  and each  $U_k$  is  $\|\cdot\|_1$ -bounded.
- 3. THE THEOREM. Let  $L_0 \subset \mathfrak{A}(D)$  be an operator Lie algebra,  $A = (A_1, \cdots, A_r)$  a basis for  $L_0$ , and let the class V of bounded perturbations be as described above. Suppose that  $L_0$  exponentiates to a  $C_0$  representation  $\pi$  of  $G_0$  on E.
- (a) Then  $L_U$  exponentiates to a  $C_0$  representation of G on E for all  $U \in V$ . We denote the exponential by  $\pi_U$ .
- (b) Let  $\Omega$  be a complex domain (in one or several dimensions). Let  $z \to U(z) = (U_1(z), \ldots, U_r(z))$  be an analytic function which is defined on  $\Omega$  and has its range in V. Then  $\pi_{U(z)}$  is analytic as a function of z, i.e.,  $z \to \pi_{U(z)}(g)$  is analytic for all  $g \in G$ .
- (c) The representations  $\pi$  and  $\pi_U$  have the same space of  $C^{\infty}$ -vectors for all  $U \in V$ .

REMARK. A suitable class of analytic perturbations U gives representations  $\pi_{II}$  which have the same space of analytic vectors as  $\pi$ .

The proof is based on two exponentiation theorems due to the co-authors of

[3]. I state those theorems as lemmas here. They are significant improvements of results announced in [4], and appear below for the first time in their strengthened form.

LEMMA 1. Let D be a normed linear space, and E the corresponding completion. Let  $L \subset \mathfrak{U}(D)$  be a finite-dimensional Lie algebra. Suppose L is generated (in the Lie sense) by a subset S such that every  $A \in S$  is closable and the closure  $\overline{A}$  generates a  $C_0$  group  $\{\pi(t, A): t \in \mathbb{R}\} \subset L(E)$ .

If D is invariant under  $\pi(t, A)$  for  $t \in \mathbb{R}$  and  $A \in S$ , and  $t \to \|B\pi(t, A)x\|$  is locally bounded for all B,  $A \in S$  and  $x \in D$ , then L exponentiates.

LEMMA 2. Let  $\lfloor$  and S be as above. (This means that we have  $C_0$  groups  $\{\pi(t,A)\}$  for  $A \in S$ , and there are finite constants  $\omega_A$  such that

$$\sup_{t} e^{-|t|\omega_A} ||\pi(t, A)|| < \infty.)$$

Let  $B_1, \ldots, B_d$  be a basis for L. Put  $B_0 = I$ , and

$$||x||_1 = \max\{||B_i x||: 0 \le i \le d\}$$

for  $x \in D$ .

Suppose each  $A \in S$  satisfies the condition: (GD) There are complex numbers  $\lambda_{\pm}$  such that Re  $\lambda_{+} > \omega_{A} + |\operatorname{ad} A|$ , Re  $\lambda_{-} < -\omega_{A} - |\operatorname{ad} A|$ , and the ranges of  $\lambda_{+}I - A$  are  $\|\cdot\|_{1}$ -dense in D. Then L exponentiates.

PROOF SKETCH (a). Suppose  $L_0$  exponentiates to a representation  $\pi$ . Let  $U \in V$ , and suppose that (i) holds. Then one may apply bounded Phillips perturbations to each of the spaces  $D_n = D_n(\pi)$  (cf. [1, Proposition 1.1]) and conclude that each  $\overline{B}_k = \overline{A}_k + \overline{U}_k$  generates a  $C_0$  group  $\pi(t, B_k)$  which leaves  $D_\infty$  invariant. So Lemma 1 applies to  $L_U$ , with D replaced by  $D_\infty$ .

If (ii) holds, then apply Lemma 2 to  $L_U$ . Bounded Phillips perturbation in  $D_1$  shows that  $\pi(t, B_k)$  restricts to a  $C_0$  group in  $L(D_1)$ . Condition (GD) is a simple consequence of this.

REMARK. The lemmas are hard to apply *directly* to operator Lie algebras that arise in applications. Fortunately many of these can be shown to be perturbations of a base-point Lie algebra to which the lemmas easily apply.

At this point I have verified, using the theorem, that the dual  $\hat{G}$  of the 3-or the 15-dimensional conformal group is analytically embedded via  $\pi_U \longrightarrow U$  in B(H) for a common Hilbert space H. The range consists of operators which are linear combinations of bounded shifts modulo the compacts (and occasionally Hilbert-Schmidts). This gives new and simple metrics on  $\hat{G}$ , and thus realizes ideas that were recently suggested to me by Professor I. E. Segal.

## REFERENCES

- 1. R. W. Goodman, One-parameter groups generated by operators in an enveloping algebra, J. Functional Analysis 6 (1970), 218-236. MR 42 #3229.
- 2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Pub., vol. 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.
- 3. P. T. Jørgensen and R. T. Moore, Commutation relations for operators, semigroups, and resolvents in mathematical physics and group representations (Preprint, 650 pp.).
- 4. R. T. Moore, Exponentiation of operator Lie algebras on Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 903-908. MR 32 #5788.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILA-DELPHIA, PENNSYLVANIA 19174