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1. A problem in control theory. Many classical coefficient problems in the 
theory of univalent functions can be stated as the following control problem. 
Consider a first order differential system 

dx/dt = f(x, u(f))9 

where x = (xt, . . . , xn), u = (ut, . . . , um) and f(x, u) = (^(x, u), . . . , 
fn(x, u)) are real valued vectors. Assume that ƒ is continuous on Rn x Rm and 
for fixed u,fG Cx(Rn). The values of u(t) are in a compact domain U C Rm. 

Denote by F the class of all piecewise continuous functions u(f) for t > 0 with 
the values in (J. Let x(t) satisfy a fixed initial condition x(0) = £. Denote by 
x(t, u) the solution of the system above for a given u{t) in f. Let F(x) = 
F(xx, . . . , xn) belong to C1(Rn). 

THEOREM 1. Let u* = u*(t) be a solution of the problem sup¥F(x(Tf u)) 

= F(x(T, M*)), for T > 0. Consider the system 

dx/dt = f(x, t/*(0)5 x(j) = 1? 

forO<r<T. Define a function FT by the equality FT(r\) = F(x(T)). Then 

X(T, W*) solves the problem supFFr(x(r, u)) = FT(X(T, M*)). 

The proof of the theorem follows by considering the functions u(t) such 
that u(t) = «*(/) for r < f < 7. In case where ƒ(*, i/) = A(u)x and F(x) = 
\'0x Theorem 1 has a very simple form. Here A(u) = (aJu)}" and a(Âu) E 
C(jRm). By A' and X' we denote the corresponding transposed matrix and vector. 

THEOREM 2. Consider a control system dx/dt = A(u(t))x. Let u*(t) 
solve the linear problem 

supFX'0x(7; w) = X'0x(r, w*). 

Then x(r, w*) so/ves f/ze linear problem 

SUPFX'(T)X(T, W) = X'(r)x(r, w*), 
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O < r < T, where \(t) is the solution ofdX/dt = - ^'(w*)\, X(7) = X0. 

2. Univalent functions. Denote by S the set of all analytic univalent func­
tions f(z) = z 4- 2£=2akz

k in the unit disc D. Let ƒ be a slit function, i.e. / 
maps D onto a slit domain. According to Loewner [1] / c an be embedded in a 
semigroup of univalent functions g(z, t) = e*(z 4- I,^z=z2ak(t)z

k) which satisfies 
the equation 

Here <p(/) is a real piece wise continuous function for t *> 0. Denote by A„ the 
set of vectors a^ = (flj, . . . , ÛW), (ax = 1) which are the first n coefficients of 
some ƒ in 5. Let /(z, f) = e"fg(zf t) = z + ^=2ak(t)z

k. Then 0(w)O) satisfies 
the system 

da<n\t)/dt = e'*<*>ö»i4nr '*W G Vf l ty ) , 0<W>(O) = *<">. 

Here 4̂W = (a^)" and Gn = (dkdk^l are the matrices: a^. = 0 for ƒ > fc,^ = 
k - 19 akj. = 2j for j < Jc, dk = k - 1, k, j = 1, . . . , n. The following result is 
basic for applications of the method of control theory to coefficient problems 
for univalent functions. 

THEOREM 3. Let y(t) be a real measurable function for t> 0. Consider 

the system daMjdt = - e
i{pit)GnAne-i{p(t)Gna^ for t > 0. 

Then (i) An is invariant under the flow defined by the system above. That is, 

ifa(n\0) G An then a(n\t) G An for any t > 0. 

(ii) Let a(w) E An and consider the set of all possible paths a^n\t) start­

ing from the point a^ for all choices of y. Then this set is dense in A„. 

Let aty) = (flj, . . . , a*) be a boundary point of A„. According to [2], 
the corresponding function /*(z) = z 4- %%=2apk is a slit function. So /*(z) 
generates the corresponding <£*(/) which appears in the Loewner equation. Using 
Theorems 2 and 3, we obtain 

THEOREM 4. Let a^ solve the problem 

max Re S f X X j = R e j x > ^ | 

subject to m constraints ak = a%, k = 1, . . . , m, (m < n - 1). Let a^n\t) be 

generated by the Loewner equation 

da^ldt = e{^t)G"Ayi<pHt)W"\ a(">(0) = *<;>• 
Define X(n)(/) fô ôe 

dX<">/tf = - e-^*(r)GM'„e ,V*(f)°"X<">, X<">(0) = X<0">. 
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Then a^n\t) solves the problem 

AY. max Re] £ V K = Re\t \('K(0 
kn (k=l ) ( fc=t 

ak = ak(t), k = 1, . . . , m, for t > 0. 

In particular we obtain that if a^"' is a supporting point of A„, so is 

a<">(r) for t > 0 [2, 10.3]. Let ? = (0, . . . , 0, 1, # + 2 , . . . , £ ) and nk = 

(r)\, . . . , nk
k, 1, 0, . . . , 0), k = 0, . . . , n - 1, where 

THEOERM 5. Assume that the Koebe function K(z) = z/(l - z)2 so/ves 

0 linear problem 

max Re{A(w>Vw>} = Re{X(w>Vw)} 

w/*m? e(w) = (1, 2, . . . ,n). 

Then the Koebe function also satisfies maxA 

Re {X(n)(x)'e<">}, /or 0 < x < 1, w/*ere \(n\x) = 2? " 0 V (X(l,)V>?r. /w porffc-
wtor, *ƒ Re{ûrw} < n, then 

Re J *£ (- lyV* f ^ ' \ [(rf)'^)] J 

< Re IL (- ^ ( „ " ^ ' ,) K ^ ( l , ) ] | > /or 0< * < 1. 

Thus, from Re{fl4} < 4 we obtain the inequality 

Re{x2a4 + 6x(l -x)a3 + 2(7x2 - 12x + 5> 2} 

< I4x2 - 30* 4- 20 

for 0 < x < 1. The full details and the proofs will appear elsewhere. 
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