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Comparison theorems in Riemannian geometry, by Jeff Cheeger and David G. 
Ebin, North-Holland Mathematical Library, vol. 9, North-Holland, 
Amsterdam; American Elsevier, New York, 1975, viii + 174 pp., $20.95. 

Differential geometry is an almost unique area within mathematics, since it 
involves both the old and the new in an essential way. Riemannian geometry 
itself has, of course, been around for over one hundred years: About 
twenty-five years ago geometers began to ask how the local curvature of 
Riemannian manifolds could influence their global properties. (There were 
clues that this was an interesting question, e.g., the theorem of Hadamard and 
Cartan that a complete simply connected Riemannian manifold of nonposi-
tive sectional curvature was diffeomorphic to Euclidean space.) The major 
opening salvo in this campaign was Rauch's work, published in 1951, showing 
that a (positive definite) Riemannian manifold whose sectional curvature 
function is sufficiently close to the curvature of the usual metric on the sphere 
is, in fact, homeomorphic to the sphere. Rauch combined techniques whose 
roots lie in the classical work: Sturm-type theorems for the systems of linear 
ordinary differential equations which result from linearization of the geodesic 
equations, and the distance minimizing property of the geodesies. Berger, 
Klingenberg and Toponogov then developed the conditions on the curvature 
which assure that the manifold is homeomorphic to the sphere and analyzed 
what happens at the precise point that the conditions are violated. They also 
developed a refined and powerful methodology to deal with this type of 
problem. In the sixties the methods were successfully applied to two general 
problems: Find Rauch-type conditions on the curvature which would assure 
that the manifold is diffeomorphic to the sphere, and study general global 
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properties of Riemannian manifolds whose sectional curvature has a fixed 
sign. 

This superb book gives us a masterful and definitive account of this work. 
The authors assume that the reader knows very well the material in a solid 
year-long course in differential and Riemannian geometry. (Alas, this is a 
course that very few can be expected to have had!) After a short review of 
this foundational material-and their definition of this includes everything up 
to and including the Rauch Comparison Theorem-they give efficient and 
polished proofs of the major results within 167 pages! 

Here are some highlights. Chapter 2 starts the real work with Toponogov's 
Theorem. This is a global inequality version of a relation between curvature, 
angles and lengths of sides of triangles, which-in an infinitesimal form-goes 
back to Riemann. Chapter 3 describes the curvature of homogeneous 
Riemannian spaces. Chapter 4 describes ideas and results of Morse Theory, 
which are to be used later. Chapters 5 and 6 present the basic results 
concerning a compact, simply connected Riemannian manifold M whose 
sectional curvature is positive and "pinched", i.e., lies in a fixed interval of 
the real numbers. If this interval lies (after normalization of the metric) in the 
half-open interval (£, 1], then M is homeomorphic to the sphere. If the 
interval is [£, 1], then M is either homeomorphic to or a sphere or the metric 
is isometric to a symmetric space. (For example, the projective spaces have-in 
the standard metric-a curvature which is pinched between \ and 1.) Chapter 
7 deals with conditions on the curvature which assume that the manifold is 
diffeomorphic to the sphere. Chapter 8 presents more recent work-due 
mainly to Cheeger, Gromoll and Meyer-concerning a complete noncompact 
Riemannian manifold of M nonnegative curvature. The main result is the 
existence of a compact, totally convex, submanifold S such that M is 
diffeomorphic to the normal bundle of S. A typical example is the cylinder: S 
is then the horizontal circle. If the sectional curvature of M is strictly positive, 
then S reduces to a point. Finally, Chapter 9 presents some recent results on 
discrete groups of isometries of Riemannian manifolds of nonpositive curva­
ture which can be proved using the direct geometric technique of the book. 

With this book in hand to give perspective, we can see that the develop­
ment of modern differentiable manifold ideas has been successfully and 
compatibly combined with classical geometric intuition and methodology. 
Most of the results do not require-as they do in many of the other avante-
garde areas of mathematics, e.g., algebraic geometry-an elaborate formalism, 
but they do involve refreshingly old-fashioned geometric ingenuity. This area 
is one of the most attractive, interesting and important in modern geometry. 

The expositional efficiency of the book has been achieved at the expense of 
the elimination of most references to the broader vistas of differential 
geometry. As a peripheral example, the local arc-length minimizing property 
of geodesies is proved using a result that is labelled only as Gauss' Lemma. 
One must be familiar with this material from another perspective to know 
that this involves the basic ideas of the classical calculus of variations-the 
Hamilton-Jacobi equation, extremal fields in the sense of Hilbert and 
Carathéodory, etc. 

In the past, differential geometry has maintained a mutually profitable 
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interchange of ideas with physics. Nowadays, physicists are more interested 
in indefinite Riemannian metrics. Again, the authors' narrow viewpoint has 
precluded anything on this topic. In fact, in parallel with this work-and with 
almost no interdisciplinary communication-physicists interested in applica­
tions of general relativity to cosmology and astrophysics have used similar 
techniques to prove singularity theorems about nonpositive Riemannian 
metrics. See the book, The large-scale structure of space-time, by Hawking 
and Ellis. 

This book is a historical landmark in the sense that it is the first to 
concentrate on the successes of post-World War II differential geometry. 
Every book published before has been more-or-less an attempt to understand 
the work of the great masters in the light of the modern sensibility. Above all 
else, we have had to struggle to understand Elie Cartan! (One can even trace 
the spirit of this book back to Cartan, particularly Géométrie des espaces de 
Riemann.) As I have already mentioned, the great successes recounted here 
have been achieved at the expense of partially, and perhaps only temporarily, 
abandoning the sweeping outlook of the classical work. One has only to 
compare this material to that in the collected works of Cartan and Lie and in 
Darboux' Théorie des surfaces to realize how much of our heritage has been 
dumped overboard. Perhaps this is due to our overemphasis on maintaining 
our status in the eyes of our big brothers, the topologists. I recall that when I 
was a student in the fifties everyone almost went around chanting, in Red 
Guard fashion: global good, local bad. Of course, this fanaticism had the 
happy consequence of leading to this impressive work; one will never know 
what might have been achieved if differential geometry had kept its tradi­
tional orientation. I would now want to ask how the techniques so precisely 
and powerfully developed in this modern work can be applied to the broader 
classical problems. My own guess is that most likely the field awaiting 
conquest is the geometric theory of nonlinear partial differential equations. 
(For example, it is not at all well known that Darboux' formidable treatise 
contains much more about this subject than it does about the theory of 
surfaces!) Perhaps the seeds to great advances in this field-and the recent 
discovery of "solitons" suggests that it is also of great interest for physics-lie 
in Darboux just as the seeds that grew to these magnificent comparison 
theorems were buried in the work of Jacobi, Riemann and Ricci. 
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Discrete-parameter martingales, by Jacques Neveu, North-Holland, Amster­
dam; American Elsevier, New York, 1975, viii 4- 236 pp., $26.95. 

It is very simple to define a martingale. If ^ c ?T2
 c • • • *s a n increasing 

sequence of sub a-fields of the a-field ^ in a probability space (fi, ?T, P), a 
sequence {xn} of real random variables is called adapted if xn is ?TW measur­
able for n = 1, 2, . . . . The adapted sequence is further called a super-
martingale if E(xn + l\§n) < xn, n > 1. It is called a martingale if the inequal­
ity is replaced by an equality and a submartingale if the inequality is reversed. 
Just one more definition is effectively all that is needed. A positive integer 


