THEORY OF ANNIHILATION GAMES

BY A. S. FRAENKEL AND Y. YESHA

Communicated by John L. Kelley, December 23, 1975

Throughout, R = (V(R), E(R)) is a finite loopless digraph with vertex set V(R) and edge set $E(R) \subset V(R) \times V(R)$, which may contain cycles. Let $F(u) = \{v \in V(R): (u, v) \in E(R)\}$, Z = nonnegative integers, $GF(2)^n = \text{the } n\text{-fold cartesian product of } GF(2)$.

Put any number of stones on distinct vertices of R. Two players play alternately. Each player at his turn moves one stone from a vertex u to some $v \in F(u)$. If v was occupied, both stones get removed (annihilation). The player making the last move wins. If there is no last move, the game is a tie.

Such an annihilation game belongs to a large class of combinatorial games discussed in [1], [3], which are analyzable by the Generalized Sprague-Grundy Function (GSG-function) $G: V(R) \longrightarrow Z \cup \{\infty\}$ [1], [2], [3] with associated counter function $c: V^f(R) \longrightarrow Z$, where $V^f(R) = \{u \in V(R): G(u) < \infty\}$ [2]. Here R is the game-graph of the game.

Our main result is the construction of a complete strategy for the game, which is polynomial in n = |V(R)|.

Let C(R) be the game-graph of the annihilation game on R, also called the contrajunctive compound of R. If $V(R) = \{u_1, \ldots, u_n\}$, the vertices of V(C(R)) (= game positions) constitute the set of all n-tuples $\overline{u} = (\alpha_1, \ldots, \alpha_n)$ over GF(2), where $\alpha_i = 1$ if and only if a stone is on u_i . Also $(\overline{u}, \overline{v}) \subseteq E(C(R))$ if and only if there is a move from \overline{u} to \overline{v} . Thus V(C(R)) is identical with the linear space $GF(2)^n$ under the operation Φ , Σ' of Nim-sum (below: Generalized Nim-sum [1], [3]).

LEMMA 1. Let

$$C^f(R) = \{\overline{u} \in V(C(R)) \colon G(\overline{u}) < \infty\}, \quad C_i(R) = \{\overline{u} \in V(C(R)) \colon G(\overline{u}) = i < \infty\}.$$

Then

- (i) $C^f(R)$ is a linear subspace of V(C(R)).
- (ii) G is a homomorphism from $C^f(R)$ onto $GF(2)^t$ with kernel $C_0(R)$ $(t = O(\log_2 n))$. In fact,

$$G(\overline{u}) < \infty \Rightarrow G(\overline{u} \oplus \overline{v}) = G(\overline{u}) \oplus G(\overline{v}).$$

(iii)
$$\{C_i(R): 0 \le i < 2^t\} = C^f(R)/C_0(R).$$

Let $L_i^k(R) = \{\overline{u} \in C_i(R): |\overline{u}| = k\}, LF^k(R) = \{\overline{u} \in C^f(R): |\overline{u}| = k\},$ $\Re(S) = \text{linear span of } S, \, \mathfrak{S}_0(R) = L_0^4(R) \cup L_0^2(R) \cup L_0^1(R), \, \mathfrak{S}^f(R) = \mathfrak{S}_0(R) \cup LF^2(R).$

LEMMA 2. (i) $C_0(R) = \mathfrak{L}(\mathfrak{S}_0(R))$.

- (ii) $C^f(R) = \mathcal{E}(\mathfrak{S}^f(R)).$
- (iii) There exists a basis $\beta^f = (\overline{u}_1, \ldots, \overline{u}_m, \overline{v}_1, \ldots, \overline{v}_t)$ for $C^f(R)$ such that $\beta_0 = (\overline{u}_1, \ldots, \overline{u}_m)$ is a basis of $C_0(R)$ and $\overline{v}_i \in L^2_{j(i)}(R)$, where $j(i) = 2^{i-1}$ $(1 \le i \le t)$.

Note. For $m \ge 0$, denote by $C^{(m)}(R)$ the subgraph of C(R) with vertices \overline{u} satisfying $|\overline{u}| \le m$. Then $C^{(m)}(R)$ has $O(n^m)$ vertices, and $\overline{u} \in V(C^{(m)}(R)) \Rightarrow F(\overline{u}) \subset V(C^{(m)}(R))$. Hence G on $C^{(m)}(R)$ can be computed from $C^{(m)}(R)$ alone. In particular, $\mathfrak{S}^f(R) \subset V(C^{(4)}(R))$. Hence $\mathfrak{S}^f(R)$ can be computed in $O(n^6)$ steps using standard algorithms for computing the GSG-function [1].

THEOREM 1. There exists an $n \times n$ matrix Γ over GF(2) which can be computed polynomially, such that for every $\overline{u} \in V(C(R))$ we have $\Gamma \cdot \overline{u}' = (\epsilon_1, \ldots, \epsilon_n)'$, where

$$\overline{u} = \sum_{i=1}^{m'} \epsilon_i \overline{u}_i \oplus \sum_{i=1}^{t'} \epsilon_{m+j} \overline{v}_j \oplus \sum_{k=1}^{n-m-t} \epsilon_{m+t+k} \overline{z}_k,$$

and $(\overline{z_1},\ldots,\overline{z_k})$ is a basis of a complementary space of $C^f(R)$. Moreover, letting $Q(\overline{u})=(\epsilon_n,\epsilon_{n-1},\ldots,\epsilon_{m+1})$, Q is a homomorphism from V(C(R)) onto $GF(2)^{n-m}$ with kernel $C_0(R)$, such that $G(\overline{u})=\overline{Q}(\overline{u})=\Sigma_{i=1}^n\epsilon_{m+i}2^{i-1}$ if $(\epsilon_n,\epsilon_{n-1},\ldots,\epsilon_{m+t+1})=(0,0,\ldots,0)$; $G(\overline{u})=\infty$ otherwise.

CONCLUSION 1. The N, P, T classification [1], [2], [3] and the GSG-function of any $\overline{u}=(\alpha_1,\ldots,\alpha_n)$ can be computed polynomially. In particular, the values $\overline{Q}(\overline{u_i})$, where $\overline{u_i}=(\epsilon_1,\ldots,\epsilon_n)$, $\epsilon_i=1$, $\epsilon_j=0$ $(j\neq i;\ i=1,\ldots,n)$, determine $G(\overline{u})$. Indeed,

$$Q(\overline{u}) = \sum_{\alpha_i=1}^{\prime} Q(\overline{u}_i) = (\delta_n, \delta_{n-1}, \dots, \delta_{m+1}),$$

and so $G(\overline{u}) = Q(\overline{u})$ if $\delta_n = \cdots = \delta_{m+t+1} = 0$; $G(\overline{u}) = \infty$ otherwise. This, however, does not yet guarantee the *realization* of a winning strategy, because of possible cycling.

Let $\overline{u} \in P = C_0(R)$. Then \overline{u} has a representation $\widetilde{u} = (\overline{y}_1, \ldots, \overline{y}_k) \subset$ $\mathfrak{S}_0(R)$ $(k \leq n)$ in the sense that $\overline{u} = \Sigma_{i=1}^{\prime k} \overline{y}_i$. For example, initially we may have $\widetilde{u} \subset \beta_0$. Let c be a monotonic counter function on $C^{(4)}(R)$ (i.e., $G(\overline{u}) < G(\overline{v}) \Rightarrow c(\overline{u}) < c(\overline{v})$). We can choose $c(\overline{u}) = O(n^4)$ for all $\overline{u} \in V(C^{(4)}(R))$. Let $\widetilde{c}(\widetilde{u}) = \Sigma_{i=1}^k c(\overline{y}_i)$. Then $\widetilde{c} = O(n^5)$.

Theorem 2. There is a function Λ_0 which can be computed polynomially, such that for every $\overline{u} \in C_0(R)$ and every $\overline{v} \in F(\overline{u})$,

$$\begin{split} \Lambda_0(\widetilde{u},\,\overline{v}) &= \widetilde{w} = (\overline{w}_1,\,\ldots\,,\,\overline{w}_k) \subset \mathfrak{S}_0(R), \\ \overline{w} &= \sum_{i=1}^k{}'\,\overline{w}_i \in F(\overline{v}) \cap P, \\ \widetilde{c}(\widetilde{w}) &< \widetilde{c}(\widetilde{u}). \end{split}$$

Note. The representation \widetilde{w} is obtained from \widetilde{u} in a bounded number of transformations. Details are omitted.

Conclusion 2. Using Λ_0 and starting from any N-position, every annihilation game can be won in $O(n^5)$ moves using polynomial computation time throughout. The function Λ_0 implies a winning strategy in the wide sense [3]. A bounded number of cycles may be traversed in realizing the strategy (but no cycling takes place in the "representation space"). We do not know if a winning strategy in the narrow sense exists which is always polynomial.

Further results, ramifications and proofs will appear elsewhere.

REFERENCES

- 1. A. S. Fraenkel and Y. Perl, Constructions in combinatorial games with cycles, Colloq. Math. Soc. János Bolyai, no. 10, Proc. Internat. Colloq. on Infinite and Finite Sets (Keszthely, Hungary, 1973; A. Hajnal, R. Rado and V. D. Sós, editors), Vol. 2, North-Holland, Amsterdam, 1975, pp. 667-699.
- 2. A. S. Fraenkel and U. Tassa, Strategy for a class of games with dynamic ties, Comput. Math. Appl. 1 (1975), 237-254.
- 3. C. A. B. Smith, Graphs and composite games, J. Combinatorial Theory 1 (1966), 51-81. MR 33 #2572.

DEPARTMENT OF APPLIED MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL