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Throughout, R = (V(R), E(R)) is a finite loopless digraph with vertex set 
V(R) and edge set E(R) C V(R) x V(R), which may contain cycles. Let F(u) = 
{v G V(R): (u, v)EE(R)}> Z = nonnegative integers, GF(2)n = the «-fold carte­
sian product of GF(2). 

Put any number of stones on distinct vertices of R. Two players play alter­
nately. Each player at his turn moves one stone from a vertex u to some v G 
F(ü). If v was occupied, both stones get removed (annihilation). The player 
making the last move wins. If there is no last move, the game is a tie. 

Such an annihilation game belongs to a large class of combinatorial games 
discussed in [1] , [3] , which are analyzable by the Generalized Sprague-Grundy 

Function (GSG-function) G: V(R) - > Z U {«>} [ i ] , [2], [3] with associated 
counter function c: Vf(R)-+Z9 where Vf(R) = {u G V(R): G(u) < <»} [2]. 
Here R is the game-graph of the game. 

Our main result is the construction of a complete strategy for the game, 
which is polynomial in n = I V(R)\. 

Let C(R) be the game-graph of the annihilation game on R, also called the 
contrajunctive compound of R. If V(R) = {ux, . . . , un}, the vertices of 
V(C(R)) (= game positions) constitute the set of all «-tuples û = (pt19 . . . , an) 

over GF(2), where at = 1 if and only if a stone is on uv Also (w, v) C E(C(R)) 

if and only if there is a move from u to ü". Thus V(C(R)) is identical with the 
linear space GF(2)n under the operation ©, Z' of Nim-sum (below: Generalized 

Nim-sum [1], [3]). 

LEMMA 1. Let 

Cf(R) = { u G V(C(R)): G(U) < ~ } , q(R) = {ûG K(C(*)): G(w) = ƒ < <*>}. 

(i) Cf(R) is a linear subspace of V(C(R)). 

(ii) G is a homomorphism from C?(R) onto GF(2)f with kernel C0(R) 

(t = 0(log2«)). In factt 

Q(u) <oo=>G(U®v) = G(u) © G(U). 

(iii) {C{R): 0<i<2f} = Cf(R)lC0(R). 
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Let Lf(R) = {ÜG Ct(R): lïïl = k}9 LFh(R) = {û G Cf(R): lul = k}9 

?(S) = linear span of S, <S0(R) = £,{J(/Î) U Z,£(R) U £,£(*), ©'(/*) = ©0(R) U 
LF2(/?). 

LEMMA 2. (i) C0(*) = ?(©<>(*))• 

(ii) C % ) = ?(@'(R)). 
(iii) 77zere exzsta 0 taw's j3^ = (7^, . . . , um, vx, . . . , vt) for Cf(R) such 

that p0 = (ul9...9um)isa basis of C0(R) and v. G LJ(i)(R), where j(i) = 21"1 

(1 < 1 < 0 . 

TVote. For m > 0, denote by C^m\R) the subgraph of C(R) with vertices 
u satisfying lui < m. Then C ( m ) (#) has 0(nm) vertices, and w G V(C(m)(R)) => 
F(w) C F(C(m)(i?)). Hence G on C ( m ) (£) can be computed from C(m)(R) 

alone. In particular, &f(R) C F(C(4)(i?)). Hence <&f(R) can be computed in 
0(n6) steps using standard algorithms for computing the GSG-function [1]. 

THEOREM 1. There exists an n x n matrix Y over GF(2) which can be 

computed polynomially\ such that for every u~ G V(C(R)) we have T • u = 
(c l 5 . . . , en)\ where 

_ m _ f _ n—m—t _ 

i = l / = 1 fc=l 

ÛTK/ (zj, . . . , zfc) w tf taszs of a complementary space of C?(R). Moreover, let­

ting Q(u) = (en, en_1, . . . , em + j), Q is a homomorphism from V(C(R)) onto 

GF(2)n~m with kernel C0(R)9 such that G(u) = Q(u) = X,
il1€m+i2

i"1 if 

(e„, e„_ l 5 . . . , em + t+1) = (0, 0, . . . , 0); G(u) = 00 otherwise. 

CONCLUSION 1. The N, P, T classification [1], [2], [3] and the GSG-

function of any ü = (at, . . . , an) can be computed polynomially. In particular, 
the values Ô(«,-)> where ïïf = (ej , . . . , e„), ef = 1, e. = 0 (/ ^ /; f = 1, . . . , n)9 

determine G(u). Indeed, 

(2(ïï)= Z ' ô ( ^ ) = ( ô „ ô n _ 1 , . . . , ô m H h l ) , 

and so G(w) = Q(u~) if 8n = • • • = SOT + f + 1 = 0; G(U) = °° otherwise. This, 
however, does not yet guarantee the realization of a winning strategy, because 
of possible cycling. 

Let ü G P = C0(R). Then w has a representation H = (J^, . . . , yk) C 
©0(/?) (fc < n) in the sense that u = 2 ^ 5>,-. For example, initially we may 
have ïï C j30. Let c be a monotonie counter function on C^\R) (i.e., G(w) < 
G(ü) =• c(ü) < c(v)). We can choose c(u) = 0(w4) for aUwG F(C(4)(/?)). Let 
?(S) = 2* = 1 c(j.). Then ? = 0(«5) . 

THEOREM 2. 77?ere is a function A0 W/HC/I can be computed polynomially, 
such that for every u G C0(R) and every v G F(u)9 
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A0(ïï, v) = w = (w t , . . . , wk) C ©0(R), 

fc _ 
iv = £ 'w z . EF(u) n P > 

i#=i 

c'Cw) < c (̂w). 

TVote. The representation w is obtained from H in a bounded number of 
transformations. Details are omitted. 

CONCLUSION 2. Using A0 and starting from any TV-position, every annihi­
lation game can be won in 0(n5) moves using polynomial computation time 
throughout. The function A0 implies a winning strategy in the wide sense [3]. 
A bounded number of cycles may be traversed in realizing the strategy (but no 
cycling takes place in the "representation space")- We do not know if a winning 

strategy in the narrow sense exists which is always polynomial. 
Further results, ramifications and proofs will appear elsewhere. 
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