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We present some inequalities involving cardinal powers. In most of the 
results we assume the existence of an ideal I satisfying a weak completeness condi­
tion. 

For the remainder of this paper, I will always denote an ideal over coj con­

taining all enumerable sets. F Ç P(CÛ%) is /-disjoint if X O Y E I for all distinct 
X, Y e F; Fis almost disjoint if IX n r i < K0 for ail distinct X, F G F. lis 

\-saturated if IFI < X for every /-disjoint F Ç P(co1 ) - /. 

THEOREM 1. Let I be o-additive. If 2* o < 2** and 2* o < tf^, then 

for every X < 2X * there is an almost disjoint F Ç P((JOX) -1 with I Fl = X. More­

over, if 2H i is singular, we get such an F with I FI = 2* i. Hence if 2* o < 2* i 
and 2^ ° < Nw t, then there exists no X-saturated ideal for any X < 2^ *. 

REMARK. In [1] the same assumption on 2H° is used to obtain an almost 
disjoint F such that IFI = 2**1. In [3] stronger assumptions on 2^° are used 
to show that the ideal of nonstationary sets is not X2-saturated. 

For S E P(cox) -I, W is an I-partition of S if W is a maximal /-disjoint 
family Ç P(S) - / . If ft/0 and Wx are /-partitions of S, then Wx is a refinement 
of W0 if every X E Wx is included in some Y G ft/0. 

/ is precipitous if for every 5 E PCcoj) - / , and every sequence Wn (« E co) 
of/-partitions of S such that Ww+1 is a refinement of Ww, there exists a sequence 
Xn E W„ such that X„ + 1 CX„ and f l {X„: « E co} # 0. 

PROPOSITION. If there is a precipitous I, then there is a o-additive, normal, 

precipitous L If I is normal and precipitous, then coj is measurable in L [I]. If 

I is ^-saturated, then I is precipitous. The ideal {X C cox : IXl < tt0 } is not 

precipitous. 

We shall consider a class of cardinal functions called nice functions. The 

following functions are nice: <ï>(a) = coa; <E>(a) = the ath weakly inaccessible 

cardinal. If 3> and \p are nice, then so are, for example, \px(a) = the ath fixed 

point of <ï>; i//2(a) = 3>(a 4- a); i//3(a) = <I>(i//(a)). 
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THEOREM 2. Suppose that there is a precipitous ideal I in PCcoj). Let 

<& be a nice cardinal function and let K be a strong limit cardinal such that 

cfO<) = cox. 

(a) If K = ^(coj), then 2K < 3>((2*i)+). 
(b) If sup { 3>(a): 3>(a) < K } < K, then 2K < min { 3>(a): $(a) > K }. 
Suppose that I is also X-saturated. Then 

(c) If K = $ (0^) , then 2K < $(X). 
(d) If 2* o < ^(coj) fl/Kf x < $(X), then 2* i < $(X). 
(e) If 2*o < ^ ( c o j fl/ttf x = 3>(X), tfzew 2 * K $ ( H X). 

(f) /ƒ 2*° < ^>(a), w/zere a < coj, tfzerc 2* 1 is less than the ath value of 

$ above X. 

For instance, if $ is the enumeration of fixed points of the aleph-function, 
(a) and (c) give estimates for a case left open in [2]. 

The assumption of niceness of $ is necessary. Using the forcing construc­
tions of [5], [6] and of Silver we can show: If K is a super-compact cardinal 
and v > K arbitrary, then there exists a generic extension which preserves cardi­
nals, and in which K is a strong limit cardinal of cofinality co1, and 2K > v. 

We have two methods to prove our results. The first method uses a generic 
ultrapower—a combination of forcing and ultrapowers. This method is related to 
Silver's work on the singular cardinal problem [7] and Solovay's and Kunen's 
work on saturated ideals [8], [4]. 

We work in a given model M. Let ƒ be a a-additive ideal over coj in M. We 
consider a generic extension corresponding to the partial ordering <P(co1)/7, Ç) . 
A generic set G is an ultrafîlter (w.r.t. M). In M[G] we consider the ultrapower 
hi — Ult(M, G) and obtain an elementary embedding /: M —• N. We use the lem­
ma that N is well founded iff/ is precipitous. 

The second method is elementary in the spirit of [2] and uses almost dis­
joint transversals (a.d.t). Let / be a-additive. An I-function is an ordinal function 
ƒ such that dom( ƒ ) G ^ ) - / . We set ƒ < g if dom( ƒ ) C domfe) and ƒ (a) < 
g(a) for all a G dom(ƒ). 

An /-function ƒ has K almost disjoint transversals if there exists a family F 
of /-functions such that: I FI > K ; g < f for all g G F; and if g, h G F and g i= h, 

then {a: g(a) = /z(a)}G/. 
We make repeated use of the following lemmas. 

LEMMA 1. Suppose that f has K a.d.L and I is \-saturated. 

(a) If K>\ then for every v < K there exists g < ƒ which has v a.d.t. 
(b) If cf(fc) > X, then there exists g Ç f such that for all h Çg, h has 

K a.d.t. 

LEMMA 2. If I is precipitous and F is a nonempty family of I-functions 
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closed under restrictions then there exists ƒ G f such that there is no g G f 
with g <f. 

REMARK. After we had announced the above results, W. Mitchell proved 
that if it is consistent that a measurable cardinal exists, then it is consistent that 
CÜJ carries a precipitous ideal. In view of this result and of the Proposition 
above, it appears that the existence of a precipitous ideal over ojj is the exact 
counterpart of measur ability, suitable for co1. This seems to give added interest 
to the results presented above. 
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