ON IDEALS OF SETS AND THE POWER SET OPERATION

BY THOMAS JECH¹ AND KAREL PRIKRY²

Communicated by S. Feferman, February 16, 1976

We present some inequalities involving cardinal powers. In most of the results we assume the existence of an ideal I satisfying a weak completeness condition.

For the remainder of this paper, I will always denote an ideal over ω_1 containing all enumerable sets. $F \subseteq P(\omega_1)$ is I-disjoint if $X \cap Y \in I$ for all distinct $X, Y \in F$; F is almost disjoint if $|X \cap Y| \leq \aleph_0$ for all distinct $X, Y \in F$. I is λ -saturated if $|F| < \lambda$ for every I-disjoint $F \subseteq P(\omega_1) - I$.

Theorem 1. Let I be σ -additive. If $2^{\aleph_0} < 2^{\aleph_1}$ and $2^{\aleph_0} < \aleph_{\omega_1}$, then for every $\lambda < 2^{\aleph_1}$ there is an almost disjoint $F \subseteq P(\omega_1) - I$ with $|F| = \lambda$. Moreover, if 2^{\aleph_1} is singular, we get such an F with $|F| = 2^{\aleph_1}$. Hence if $2^{\aleph_0} < 2^{\aleph_1}$ and $2^{\aleph_0} < \aleph_{\omega_1}$, then there exists no λ -saturated ideal for any $\lambda < 2^{\aleph_1}$.

REMARK. In [1] the same assumption on 2^{\aleph_0} is used to obtain an almost disjoint F such that $|F| = 2^{\aleph_1}$. In [3] stronger assumptions on 2^{\aleph_0} are used to show that the ideal of nonstationary sets is not \aleph_2 -saturated.

For $S \in \mathcal{P}(\omega_1) - I$, W is an *I-partition* of S if W is a maximal *I*-disjoint family $\subseteq \mathcal{P}(S) - I$. If W_0 and W_1 are *I*-partitions of S, then W_1 is a refinement of W_0 if every $X \in W_1$ is included in some $Y \in W_0$.

I is precipitous if for every $S \in \mathcal{P}(\omega_1) - I$, and every sequence \mathcal{W}_n $(n \in \omega)$ of I-partitions of S such that \mathcal{W}_{n+1} is a refinement of \mathcal{W}_n , there exists a sequence $X_n \in \mathcal{W}_n$ such that $X_{n+1} \subseteq X_n$ and $\bigcap \{X_n \colon n \in \omega\} \neq 0$.

PROPOSITION. If there is a precipitous I, then there is a σ -additive, normal, precipitous I. If I is normal and precipitous, then ω_1 is measurable in L[I]. If I is \aleph_2 -saturated, then I is precipitous. The ideal $\{X\subseteq\omega_1\colon |X|\leqslant\aleph_0\}$ is not precipitous.

We shall consider a class of cardinal functions called *nice functions*. The following functions are nice: $\Phi(\alpha) = \omega_{\alpha}$; $\Phi(\alpha) =$ the α th weakly inaccessible cardinal. If Φ and ψ are nice, then so are, for example, $\psi_1(\alpha) =$ the α th fixed point of Φ ; $\psi_2(\alpha) = \Phi(\alpha + \alpha)$; $\psi_3(\alpha) = \Phi(\psi(\alpha))$.

AMS (MOS) subject classifications (1970). Primary 02K35.

¹Research supported by NSF Grant MPS75-07408.

²Research supported by NSF Grant GP-43841.

Copyright © 1976, American Mathematical Society

Theorem 2. Suppose that there is a precipitous ideal I in $\mathcal{P}(\omega_1)$. Let Φ be a nice cardinal function and let κ be a strong limit cardinal such that $\mathrm{cf}(\kappa) = \omega_1$.

- (a) If $\kappa = \Phi(\omega_1)$, then $2^{\kappa} < \Phi((2^{\aleph_1})^+)$.
- (b) If $\sup \{ \Phi(\alpha) : \Phi(\alpha) < \kappa \} < \kappa$, then $2^{\kappa} \le \min \{ \Phi(\alpha) : \Phi(\alpha) > \kappa \}$.

Suppose that I is also λ -saturated. Then

- (c) If $\kappa = \Phi(\omega_1)$, then $2^{\kappa} < \Phi(\lambda)$.
- (d) If $2^{\aleph_0} \le \Phi(\omega_1)$ and $\lambda < \Phi(\lambda)$, then $2^{\aleph_1} \le \Phi(\lambda)$.
- (e) If $2^{\aleph_0} \le \Phi(\omega_1)$ and $\lambda = \Phi(\lambda)$, then $2^{\aleph_1} \le \Phi(\lambda + \lambda)$.
- (f) If $2^{\aleph_0} < \Phi(\alpha)$, where $\alpha < \omega_1$, then 2^{\aleph_1} is less than the α th value of Φ above λ .

For instance, if Φ is the enumeration of fixed points of the aleph-function, (a) and (c) give estimates for a case left open in [2].

The assumption of niceness of Φ is necessary. Using the forcing constructions of [5], [6] and of Silver we can show: If κ is a super-compact cardinal and $\nu > \kappa$ arbitrary, then there exists a generic extension which preserves cardinals, and in which κ is a strong limit cardinal of cofinality ω_1 , and $2^{\kappa} > \nu$.

We have two methods to prove our results. The first method uses a generic ultrapower—a combination of forcing and ultrapowers. This method is related to Silver's work on the singular cardinal problem [7] and Solovay's and Kunen's work on saturated ideals [8], [4].

We work in a given model M. Let I be a σ -additive ideal over ω_1 in M. We consider a generic extension corresponding to the partial ordering $\langle P(\omega_1)/I, \subseteq \rangle$. A generic set G is an ultrafilter (w.r.t. M). In M[G] we consider the ultrapower N = Ult(M, G) and obtain an elementary embedding $i: M \longrightarrow N$. We use the lemma that N is well founded iff I is precipitous.

The second method is elementary in the spirit of [2] and uses almost disjoint transversals (a.d.t). Let I be σ -additive. An I-function is an ordinal function f such that $dom(f) \in P(\omega_1) - I$. We set f < g if $dom(f) \subseteq dom(g)$ and $f(\alpha) < g(\alpha)$ for all $\alpha \in dom(f)$.

An I-function f has κ almost disjoint transversals if there exists a family F of I-functions such that: $|F| \ge \kappa$; g < f for all $g \in F$; and if g, $h \in F$ and $g \ne h$, then $\{\alpha: g(\alpha) = h(\alpha)\} \in I$.

We make repeated use of the following lemmas.

LEMMA 1. Suppose that f has κ a.d.t. and I is λ -saturated.

- (a) If $\kappa \ge \lambda$, then for every $\nu < \kappa$ there exists g < f which has ν a.d.t.
- (b) If $cf(\kappa) \ge \lambda$, then there exists $g \subseteq f$ such that for all $h \subseteq g$, h has κ a.d.t.

LEMMA 2. If I is precipitous and F is a nonempty family of I-functions

closed under restrictions then there exists $f \in F$ such that there is no $g \in F$ with g < f.

REMARK. After we had announced the above results, W. Mitchell proved that if it is consistent that a measurable cardinal exists, then it is consistent that ω_1 carries a precipitous ideal. In view of this result and of the Proposition above, it appears that the existence of a precipitous ideal over ω_1 is the exact counterpart of measurability, suitable for ω_1 . This seems to give added interest to the results presented above.

REFERENCES

- 1. J. E. Baumgartner, Ph.D. Thesis, University of Calif., Berkeley, 1970.
- 2. F. Galvin and A. Hajnal, *Inequalities for cardinal powers*, Ann. of Math. (2) 101 (1975), 491-498.
- 3. J. Ketonen, Some combinatorial principles, Trans. Amer. Math. Soc. 188 (1974), 387-394. MR 48 #10808.
- 4. K. Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179-227. MR 43 #3080.
 - 5. M. Magidor, Changing cofinalities of cardinals (to appear).
 - 6. T. Menas, Ph.D. Thesis, Univ. of Calif., Berkeley, 1973.
- 7. J. Silver, On the singular cardinals problem, Proc. Internat. Congr. Mathematicians, (Vancouver, 1974), vol. 1, 265-268.
- 8. R. M. Solovay, *Real-valued measurable cardinals*, Axiomatic Set Theory (Proc. Sympos. Pure Math., vol. 13, Part 1), Amer. Math. Soc., Providence, R. I., 1971, pp. 397-428. MR 45 #55.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455