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1. Introduction. The author [2] , [3], and [4] has previously studied the 
equation 

(1) Lu = \u + 77(X, u) 

in a real Banach space B where L is linear and H is compact and oQ\u ||)is 
uniformly on bounded X intervals. In that setting, if X0 is an isolated normal 
eigenvalue of L having odd algebraic multiplicity, then (X0, 0) E R x B is a bi­
furcation point for (1). Moreover, a continuous branch of solutions emanates 
from each of these points and obeys a threefold alternative. 

This paper combines methods of the author and Stuart [7] to show that 
similar results hold if H(X, ü) is merely continuous and oQ\u ||) uniformly on 
bounded X intervals. 

2. Preliminaries. In this paper all work is a real Banach space B. L de­
notes a linear operator densely defined in B, and H represents a continuous oper­
ator that is o(\\ u ||) near u — 0 uniformly on bounded X intervals. Define the 
essential spectrum of L as the members of the spectrum of L which are not 
isolated normal eigenvalues of L and denote this set by e(L). 

We consider a normal eigenvalue X0 of L. Let 

ocXo = sup {y \y G e(L), y < X0 } and 0XQ = inf {7 I7 e e(L)> 7 > xo > 

respectively if the corresponding sup or inf exists. Otherwise, set ax = - 00 a nd/ 
or j3x = + oo. Assume for now that as and öx are both finite. For e > 0, 
the only members of the spectrum of L in (o^ 4- e, j3̂  - e) are normal eigen­
values of L. If Pe denotes the projector onto the direct sum of the eigenspaces 
of these eigenvalues and Q€ — I - P€, then it has been shown [2] , [3] and [4] 
that 

(L-n0)P€u I P€ \ 

X-M 0 \ X-Mo/ 

is equivalent to (1) for X in [ax + e, ]3X - e] and JU0 any member of the re­
solvent of L not lying in (aK , |3X ) ((L - X)"1 is defined on QeB). 
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Define 
\\\H(K,u)\\ 

M(K, 7) = sup {' 0 < I I I I I K T ' 

Clearly lim7^0M(X, 7) = 0. 

3. Results. Consider equation (1) in a real Banach space B, with L linear 

and H continuous, o(||w||) uniformly on bounded intervals. 

THEOREM I. Let X0 be an isolated eigenvalue of L having odd algebraic 
multiplicity. Then (X0, 0) is a bifurcation point for (2) and emanating from that 
point there is a maximal continuous branch of solutions Cx that must obey the 
following alternative: 

(a) Cx is unbounded, or 
(b) Cx is bounded and for each Ô > 0, Cx meets the surface 

S€ = {(X, 11) I ll(X - x r 1 Ö e IIM(X, 7) = 1, 

\\u II = 7, <*\ + e < X < 0 \ - e } for some e, 0 < e < ô , 

(c) Cx is bounded, Cx does not meet S€ for all e G (0, Ô) for some 
d > 0, and Cx n {0 x B } = {X0, \ , . . . , \n } , eacft a distinct normal eigen­
value of L, and the sum of their algebraic multiplicities being even. 

PROOF. Assume for now that ax and /3X are finite, and that Cx does 
not obey any of the three alternatives. Then Cx consists of pairs (X, u) with 
otx + 2e < X < ($x - 2e for some e > 0. Using this e, one sees that the oper­
ators on the right side of (2) are a fc-set contraction with 

k=l(L- X)~1ôe ||M(X, 7) for each X G ( c ^ 4- e, PXQ - e), 

and u with II w II < 7. We may further assume that Cx does not meet Se. If 
S€ is viewed in R x \\B II, we see that k < 1 below S€. Techniques developed 
in [2] and [6] which employ degree theory for fc-set contractions [5] lead to a 
contradiction. 

In the case that ax or px are infinite, the result is obtained using an 
iterative procedure. 

In the case that L is selfadjoint, the results are simpler. Let d(X) = 
m i n ( X - a v 0 X ( ) - X ) . 

COROLLARY 1. If the assumptions of Theorem I hold and if, moreover, 
L is selfadjoint, then alternatives (b) and (c) are equivalent to 

(b') Cx is bounded and Cx meets 

5 = { ( X '" ) |^? ) = 1'll"ll = 7'%<X<^o} 
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(c') Cx is bounded, Cx does not meet S, and Cx n {0 x B} = {X0, 

Xx, . . . , Xn }, each a distinct normal eigenvalue of L, and the sum of their 

algebraic multiplicities being even. 

PROOF. With L being selfadjoint and ax 4- e < X < &x - e, 

11(1 - XflQe II = II (L - X)-1 \Q€B II II Q€ Il = Il (L - X)-1 \QeB II. 

As e goes to 0, \\(L - X)"1 \QeB\\ approaches \\(L ~ XT1Q0
BW = Vd(X) and Se 

approaches S. 
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