## GLOBAL BIFURCATION THEOREMS FOR NONLINEARLY PERTURBED OPERATOR EQUATIONS

## BY JOHN MACBAIN

Communicated by R. K. Miller, February 3, 1976

1. Introduction. The author [2], [3], and [4] has previously studied the equation

(1) 
$$Lu = \lambda u + H(\lambda, u)$$

in a real Banach space B where L is linear and H is compact and o(||u||) is uniformly on bounded  $\lambda$  intervals. In that setting, if  $\lambda_0$  is an isolated normal eigenvalue of L having odd algebraic multiplicity, then  $(\lambda_0, 0) \in R \times B$  is a bifurcation point for (1). Moreover, a continuous branch of solutions emanates from each of these points and obeys a threefold alternative.

This paper combines methods of the author and Stuart [7] to show that similar results hold if  $H(\lambda, u)$  is merely continuous and o(||u||) uniformly on bounded  $\lambda$  intervals.

2. **Preliminaries.** In this paper all work is a real Banach space B. L denotes a linear operator densely defined in B, and H represents a continuous operator that is o(||u||) near u=0 uniformly on bounded  $\lambda$  intervals. Define the essential spectrum of L as the members of the spectrum of L which are not isolated normal eigenvalues of L and denote this set by e(L).

We consider a normal eigenvalue  $\lambda_0$  of L. Let

$$\alpha_{\lambda_0} = \sup \left\{ \gamma \, | \, \gamma \in e(L), \, \gamma < \lambda_0 \, \right\} \quad \text{and} \quad \beta_{\lambda_0} = \inf \left\{ \gamma \, | \, \gamma \in e(L), \, \gamma > \lambda_0 \, \right\}$$

respectively if the corresponding sup or inf exists. Otherwise, set  $\alpha_{\lambda_0} = -\infty$  and/ or  $\beta_{\lambda_0} = +\infty$ . Assume for now that  $\alpha_{\lambda_0}$  and  $\beta_{\lambda_0}$  are both finite. For  $\epsilon > 0$ , the only members of the spectrum of L in  $(\alpha_{\lambda_0} + \epsilon, \beta_{\lambda_0} - \epsilon)$  are normal eigenvalues of L. If  $P_\epsilon$  denotes the projector onto the direct sum of the eigenspaces of these eigenvalues and  $Q_\epsilon = I - P_\epsilon$ , then it has been shown [2], [3] and [4] that

(2) 
$$u = \frac{(L - \mu_0)P_{\epsilon}u}{\lambda - \mu_0} + \left((L - \lambda)^{-1}Q_{\epsilon} - \frac{P_{\epsilon}}{\lambda - \mu_0}\right)H(\lambda, u)$$

is equivalent to (1) for  $\lambda$  in  $[\alpha_{\lambda_0} + \epsilon, \beta_{\lambda_0} - \epsilon]$  and  $\mu_0$  any member of the resolvent of L not lying in  $(\alpha_{\lambda_0}, \beta_{\lambda_0})$   $((L - \lambda)^{-1})$  is defined on  $Q_{\epsilon}B$ .

AMS (MOS) subject classifications (1970). Primary 46N05.

Define

$$M(\lambda, \gamma) = \sup \left\{ \frac{\|H(\lambda, u)\|}{\|u\|} \, \middle| \, 0 < \|u\| \leq \gamma \right\}.$$

Clearly  $\lim_{\gamma \to 0} M(\lambda, \gamma) = 0$ .

3. **Results.** Consider equation (1) in a real Banach space B, with L linear and H continuous, o(||u||) uniformly on bounded intervals.

THEOREM I. Let  $\lambda_0$  be an isolated eigenvalue of L having odd algebraic multiplicity. Then  $(\lambda_0,0)$  is a bifurcation point for (2) and emanating from that point there is a maximal continuous branch of solutions  $C_{\lambda_0}$  that must obey the following alternative:

- (a)  $C_{\lambda_0}$  is unbounded, or
- (b)  $C_{\lambda_0}^{\delta}$  is bounded and for each  $\delta > 0$ ,  $C_{\lambda_0}$  meets the surface

$$\begin{split} S_{\epsilon} &= \{ (\lambda, u) \mid \| (L - \lambda)^{-1} Q_{\epsilon} \| M(\lambda, \gamma) = 1, \\ \| u \| &= \gamma, \quad \alpha_{\lambda_0} + \epsilon < \lambda < \beta_{\lambda_0} - \epsilon \} \quad \textit{for some } \epsilon, 0 < \epsilon < \delta, \end{split}$$

(c)  $C_{\lambda_0}$  is bounded,  $\overline{C_{\lambda_0}}$  does not meet  $S_{\epsilon}$  for all  $\epsilon \in (0, \delta)$  for some  $\delta > 0$ , and  $C_{\lambda_0} \cap \{0 \times B\} = \{\lambda_0, \lambda_1, \ldots, \lambda_n\}$ , each a distinct normal eigenvalue of L, and the sum of their algebraic multiplicities being even.

PROOF. Assume for now that  $\alpha_{\lambda_0}$  and  $\beta_{\lambda_0}$  are finite, and that  $C_{\lambda_0}$  does not obey any of the three alternatives. Then  $C_{\lambda_0}$  consists of pairs  $(\lambda, u)$  with  $\alpha_{\lambda_0} + 2\epsilon < \lambda < \beta_{\lambda_0} - 2\epsilon$  for some  $\epsilon > 0$ . Using this  $\epsilon$ , one sees that the operators on the right side of (2) are a k-set contraction with

$$k = \|(L - \lambda)^{-1}Q_{\epsilon}\|M(\lambda, \gamma) \quad \text{for each } \lambda \in (\alpha_{\lambda_0} + \epsilon, \beta_{\lambda_0} - \epsilon),$$

and u with  $\|u\| \leq \gamma$ . We may further assume that  $C_{\lambda_0}$  does not meet  $S_{\epsilon}$ . If  $S_{\epsilon}$  is viewed in  $\mathbb{R} \times \|B\|$ , we see that k < 1 below  $S_{\epsilon}$ . Techniques developed in [2] and [6] which employ degree theory for k-set contractions [5] lead to a contradiction.

In the case that  $\alpha_{\lambda_0}$  or  $\beta_{\lambda_0}$  are infinite, the result is obtained using an iterative procedure.

In the case that L is selfadjoint, the results are simpler. Let  $d(\lambda) = \min(\lambda - \alpha_{\lambda_0}, \beta_{\lambda_0} - \lambda)$ .

COROLLARY 1. If the assumptions of Theorem I hold and if, moreover, L is selfadjoint, then alternatives (b) and (c) are equivalent to

(b')  $C_{\lambda_0}$  is bounded and  $\overline{C_{\lambda_0}}$  meets

$$S = \left\{ (\lambda, u) \left| \frac{M(\lambda, \gamma)}{d(\lambda)} = 1, \|u\| = \gamma, \alpha_{\lambda_0} < \lambda < \beta_{\lambda_0} \right\} \right\}$$

(c')  $C_{\lambda_0}$  is bounded,  $\overline{C_{\lambda_0}}$  does not meet S, and  $C_{\lambda_0} \cap \{0 \times B\} = \{\lambda_0, \lambda_1, \ldots, \lambda_n\}$ , each a distinct normal eigenvalue of L, and the sum of their algebraic multiplicities being even.

PROOF. With 
$$L$$
 being selfadjoint and  $\alpha_{\lambda_0} + \epsilon < \lambda < \beta_{\lambda_0} - \epsilon$ , 
$$\|(L - \lambda)^{-1}Q_{\epsilon}\| = \|(L - \lambda)^{-1}\|Q_{\epsilon}B\|\|Q_{\epsilon}\| = \|(L - \lambda)^{-1}\|Q_{\epsilon}B\|.$$

As  $\epsilon$  goes to 0,  $\|(L-\lambda)^{-1}|Q_{\epsilon}B\|$  approaches  $\|(L-\lambda)^{-1}Q_{0}B\|=1/d(\lambda)$  and  $S_{\epsilon}$  approaches S.

## REFERENCES

- 1. M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, GITTL, Moscow, 1956; English transl., Macmillan, New York, 1964. MR 20 # 3464; 28 # 2414.
- 2. J. A. MacBain, Local and global bifurcation from normal eigenvalues, Ph. D. Thesis, Purdue Univ., 1974.
- 3. ———, Global bifurcation theorems for noncompact operators, Bull. Amer. Math. Soc. 80 (1974), 1005-1009. MR 50 # 14403.
- 4. ———, Local and global bifurcation from normal eigenvalues, Pacific J. Math. 63 (1976).
- 5. R. D. Nussbaum, The fixed point index and fixed point theorems for k-set contractions, Ph.D. Thesis, Chicago, Ill., 1969.
- 6. P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain Consortium Sympos. on Nonlinear Eigenvalue Problems (Santa Fe, N. M., 1971), Rocky Mountain J. Math. 3 (1973), 161-202. MR 47 # 9383.
- 7. C. A. Stuart, Some bifurcation theory for k-set contractions, Proc. London Math. Soc. (3) 27 (1973), 531-550.

DEPARTMENT OF MATHEMATICS, AIR FORCE INSTITUTE OF TECHNOLOGY, WRIGHT-PATTERSON AIR FORCE BASE, DAYTON, OHIO 45433