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In this paper we announce several results whose proofs will appear elsewhere. 
Throughout this paper M will be an «-dimensional smooth, connected, com­

pact and oriented Riemannian manifold with boundary N. 

DEFINITION. If ƒ is a smooth function on M then the rth invariant, Sr(f), 

of the Hessian operator of/, where r = 0, 1, . . . , n, is the rth elementary sym­
metric function of the eigenvalues of this operator. 

THEOREM. 1. If M, N and ƒ are as above then 

f 2SJf)a= f {(Az - uKt)u - <Vz, Vw>-II(Vz, Vw)}^ 
J M JN 

0) r 
+ I Ric (grad/, grad/) ft. 

J M 

In this formula z = f\N, u is the exterior derivative of ƒ along N, Kx is n - 1 
times the mean curvature and II is the second fundamental form (of TV in Af), 
while A is the Laplace operator, V is the gradient and ^ is the volume form on 
N; similarly, grad is the gradient, Ric is the Ricci tensor and ft is the volume form 
on Af. 

REMARK. We have a similar formula involving Sr( ƒ) for r > 3. 

THEOREM 2. Let My N be as above and assume that (a) for some constant 
c2 > 0 all the Ricci curvatures on M are bounded below by (n — \)c2 and (b) 
Kx < 0. Then the first eigenvalue \x for the Laplace operator on M (for the 
fixed membrane problem) satisfies the inequality Xt > nc2. Moreover, equality 
occurs if and only if M is isometric to a full hemisphere of the standard sphere of 
radius 1/c. 

REMARK. This generalizes to the situation of manifolds with boundary the 
well-known theorems of Lichnerowicz [3] and Obata [4]. Our proof uses Theo­
rem 1 and an analog of Obata's Theorem A. 

COROLLARY. Let Nbea compact minimally imbedded hypersurface in 

the n-sphere of radius 1/c and let M be one of the two domains into which N cuts 

the sphere. If Xx is the first eigenvalue of the Laplace operator on M, then Xx > 

nc2
f with equality if and only ifN is imbedded as an equator. 
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Theorem 1 also provides a simple proof of the following well-known theo­
rem of Aleksandrov [1]. 

THEOREM 3. If N is a compact hypersurface in R", with constant mean 
curvature, which bounds a compact domain M, then N is a hypersphere. 

In our proof of Theorem 3 we apply Theorem 1 to a solution of the Poisson 
equation A ƒ = 1, with boundary condition ƒ = 0 on N. 

Our final application of Theorem 1 extends results of Flanders [2]. 

THEOREM 4. Let W be an n-dimensional Riemannian manifold of positive-
semidefinite Ricci curvature. For a point p in W and real t > 0 let B(p, t) and 
S(p, t) denote {respectively) the closed ball and the sphere of radius t about p. 
Suppose that T> 0 is small enough that for all t E (0, T], B(p, t) is a normal 
neighborhood of p and S(p, t) has negative semidefinite second fundamental 
form (relative to the exterior normal to B(p, t)). Denote the volume of B(p, t) 
by V(t). If f is a smooth function which satisfies on B(p, t) an inequality S2(f) 
< - a(l + | grad ƒ I2)1 + 2 e for certain positive constants a and e, then for each 
tx G (0, T] we have 

(2) ^iTTTjLS-m) *' 
Our proof uses Theorem 1 (with M = B(p, T)) together with a generaliza­

tion of formula 3.1 of [2]. 
REMARK. Flanders proves (2) in the special case W = Rw and uses it to 

estimate (in terms of a, e and n) an upper bound on T. We are able to obtain 
similar bounds in certain other cases, for example: 

COROLLARY. Suppose that W is a two-dimensional sphere of radius R. If 
there is a function f which satisfies the hypotheses of Theorem 4 with e = 1, then 
T<4R arc sin(l/(l + R2a)1/2). 

REMARK. We arrive at the estimate obtained by Flanders in the correspon­
ding case W = R2, e = 1, by letting R tend towards infinity. 
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