APPLICATIONS OF THE INTEGRAL OF AN INVARIANT OF THE HESSIAN

BY ROBERT C. REILLY

Communicated by S. S. Chern, March 5, 1976

In this paper we announce several results whose proofs will appear elsewhere. Throughout this paper M will be an n-dimensional smooth, connected, compact and oriented Riemannian manifold with boundary N.

DEFINITION. If f is a smooth function on M then the rth invariant, $S_r(f)$, of the Hessian operator of f, where $r = 0, 1, \ldots, n$, is the rth elementary symmetric function of the eigenvalues of this operator.

THEOREM. 1. If M, N and f are as above then $\int_{M} 2S_{2}(f)\Omega = \int_{N} \{ (\Delta z - uK_{1})u - \langle \nabla z, \nabla u \rangle - \text{II}(\nabla z, \nabla u) \} \Psi$ $+ \int_{M} \text{Ric} (\text{grad } f, \text{grad } f) \Omega.$

In this formula $z = f|_N$, u is the exterior derivative of f along N, K_1 is n-1 times the mean curvature and II is the second fundamental form (of N in M), while Δ is the Laplace operator, ∇ is the gradient and Ψ is the volume form on N; similarly, grad is the gradient, Ric is the Ricci tensor and Ω is the volume form on M.

REMARK. We have a similar formula involving $S_r(f)$ for $r \ge 3$.

THEOREM 2. Let M, N be as above and assume that (a) for some constant $c^2 > 0$ all the Ricci curvatures on M are bounded below by $(n-1)c^2$ and (b) $K_1 \le 0$. Then the first eigenvalue λ_1 for the Laplace operator on M (for the fixed membrane problem) satisfies the inequality $\lambda_1 \ge nc^2$. Moreover, equality occurs if and only if M is isometric to a full hemisphere of the standard sphere of radius 1/c.

REMARK. This generalizes to the situation of manifolds with boundary the well-known theorems of Lichnerowicz [3] and Obata [4]. Our proof uses Theorem 1 and an analog of Obata's Theorem A.

COROLLARY. Let N be a compact minimally imbedded hypersurface in the n-sphere of radius 1/c and let M be one of the two domains into which N cuts the sphere. If λ_1 is the first eigenvalue of the Laplace operator on M, then $\lambda_1 \ge nc^2$, with equality if and only if N is imbedded as an equator.

AMS (MOS) subject classifications (1970). Primary 53C20, 53C40.

Copyright © 1976, American Mathematical Society

Theorem 1 also provides a simple proof of the following well-known theorem of Aleksandrov [1].

THEOREM 3. If N is a compact hypersurface in \mathbb{R}^n , with constant mean curvature, which bounds a compact domain M, then N is a hypersphere.

In our proof of Theorem 3 we apply Theorem 1 to a solution of the Poisson equation $\Delta f = 1$, with boundary condition f = 0 on N.

Our final application of Theorem 1 extends results of Flanders [2].

THEOREM 4. Let W be an n-dimensional Riemannian manifold of positive-semidefinite Ricci curvature. For a point p in W and real t > 0 let B(p, t) and S(p, t) denote (respectively) the closed ball and the sphere of radius t about p. Suppose that T > 0 is small enough that for all $t \in (0, T]$, B(p, t) is a normal neighborhood of p and S(p, t) has negative semidefinite second fundamental form (relative to the exterior normal to B(p, t)). Denote the volume of B(p, t) by V(t). If f is a smooth function which satisfies on B(p, t) an inequality $S_2(f) \le -\alpha(1+|\operatorname{grad} f|^2)^{1+2\epsilon}$ for certain positive constants α and ϵ , then for each $t_1 \in (0, T]$ we have

(2)
$$1 \le \epsilon \left(\frac{2\alpha}{1+\epsilon}\right)^{1/2} \int_{t_1}^{T} \left(\frac{V(t_1)}{V(t)}\right)^{\epsilon} dt.$$

Our proof uses Theorem 1 (with M = B(p, T)) together with a generalization of formula 3.1 of [2].

REMARK. Flanders proves (2) in the special case $W = \mathbb{R}^n$ and uses it to estimate (in terms of α , ϵ and n) an upper bound on T. We are able to obtain similar bounds in certain other cases, for example:

COROLLARY. Suppose that W is a two-dimensional sphere of radius R. If there is a function f which satisfies the hypotheses of Theorem 4 with $\epsilon = 1$, then $T \leq 4R$ arc $\sin(1/(1 + R^2\alpha)^{1/2})$.

REMARK. We arrive at the estimate obtained by Flanders in the corresponding case $W = R^2$, $\epsilon = 1$, by letting R tend towards infinity.

REFERENCES

- 1. A. D. Aleksandrov, Uniqueness theorems for surfaces in the large. V, Vestnik Leningrad Univ. (13) (1958), no. 19, 5-8; English transl. Amer. Math. Soc. Transl. (2) 21 (1962), 412-416. MR 21 #909; 27 #698e.
- 2. H. Flanders, Non-parametric hypersurfaces with bounded curvatures, J. Differential Geometry 2 (1968), 265-277. MR 39 #2097.
- 3. A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1957. MR 23 #A1329.
- 4. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. MR 25 #5479.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, CALIFORNIA 92717