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ABSTRACT. In this announcement some results concerning a functional 

calculus for subnormal operators, in which the functions involved are not neces­

sarily continuous, are presented. This functional calculus can be used to study 

the structure of subnormal operators. 

Throughout this paper S is a subnormal operator on a separable Hilbert 
space H, N is its minimal normal extension on K, and // is a scalar spectral mea­
sure for N. If T is any operator, A{T) is the ultraweakly closed algebra generated 
by T and 1, W(7) is the weak closure of A{T), and W*(7) is the von Neumann 
algebra generated by T. 

If JP°°(JU) denotes the weak star closure of the polynomials in L°°(jx) then 
it is easy to show that A(/V) = W(N) = {ƒ(#): feP°°{n)}, and for every ƒ in 
P°°(M), f{N) leaves H invariant. Define f{S) by the formula f{S)x = /(/V> for 
each x in tf; equivalently, f{S) = f{N)\ H. 

THEOREM 1. ACS) = {f(S): f e F » } . 

In [1, p. 89] Bram showed that if T E W{S) then there is a unique R in 
W*(7V) such that \\R\\ = II711, RH C H, and T = R\H. He also asked if this could 
be strengthened to get that W(S) = {R\H: Re W(7V)}. Theorem 1 shows this to 
be possible if and only if (Jil(S) = A(S). 

The next result has several applications in the study of subnormal operators. 

THEOREM 2. If (X, £2, v) is a finite measure space and A is any weak star 

closed subalgebra of L°°(v) that contains 1, then there is a countable measurable 

partition { A0, Ax, . . . } of X with the following properties: (a) XA e A for all 

n > 0; (b) for n > 1, An = AXA ^ antisymmetric {le., every hermitian element 

in An is a multiple ofxAn)'> (c) A0 = AXA0 *S pseudosymmetric {le., for every 

subset A of A0 with JU(A) > 0 there is an element of A0 that is real-valued on 

A but not constant there). 

Using the methods of [2] (and, in particular, Theorem 1 of [2]), the fol­

lowing is obtained. 
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THEOREM 3. If P°°(ii) is an antisymmetric algebra then there is a simply 
connected region G such that ju is supported by G~ and there is a natural injec­
tion of H°°(G) into L°°{ii) whose image is P°°(jx). 

Here H°°(G) denotes the bounded analytic functions on G and the above 
identification is denoted by P°°(IJL) = H°°(G, JU). If Theorems 2 and 3 are com­
bined then a refinement of Sarason's Theorem 2 in [2] is obtained. Similar 
results can be obtained for R°°(K, jS), the weak star closure of R(K) in L°°(//), 
for certain compact subsets that carry jit. 

For any operator T, Red T denotes the lattice of reducing subspaces of T. 

THEOREM 4. There are spaces {Kn: n> 0 } in Red N and { Hn: n > 0} in 

Red S such that: 

(a) Hw Ç Kn and N leaves Hn invariant; 

(b) K = K0
 e Ki e ' " * and H = tfo e H l 0 ' * * » 

(c) K0 = H0 and N\ H0 is a reductive normal operator; 

(d) A(S\Hn) is antisymmetric for n > 1 ; 
(e) N\ Kn is the minimal normal extension of S\Hn for n > 1 ; 

(f) A(S) = A(SlH0)©A(SlH1)©---f lwd AÇV)= A(N\K0) e AÇVlK^ 
©• • • . 

The effect of Theorem 4 is to reduce the study of subnormal operators to 
the case where A(£) is antisymmetric. 

THEOREM 5. If P°°(ix) is antisymmetric and f G P°°(JJL) is not constant 
then f(N) is the minimal normal extension of f(S). 

If the hypothesis of antisymmetry in the preceding theorem is deleted 

then Theorems 4 and 5 can be combined to determine the minimal normal exten­

sion of f(S) for any ƒ in I*"(p.). 

THEOREM 6. If P°°(PL) is antisymmetric, P°°(JU) = H°°{G, //), and f G P°°(IJL) 

then 

o(f(S)) = [f(o(S) n G)]" U a(/(7V)). 

An application of the above results and the techniques used to prove them 

gives the following. 

THEOREM 7. If A is any nonreductive normal operator on K then there 

is a nonreducing invariant subspace H for A such that A is the minimal normal 

extension ofA\H and A IH has a nontrivial invariant subspace. 

It is also possible to define a functional calculus for S using functions in 
R°°(o(S), JU). With certain restrictions on S the methods used to obtain the pre­
ceding theorems yield analogous results. Work is in progress to remove these 
restrictions. 
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The details of this work as well as further refinements, technical informa­

tion, and applications will appear elsewhere. 
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