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I. Introduction. In the study of eigenfunction expansions for a differential 
operator D one usually introduces the resolvent of D or, what is essentially the 
same thing, the heat operator related to D. This means that we study an opera­
tor involving more variables than D and then "descend" to D itself. An analogous 
idea is employed in case D is the Laplacian on the sphere. The eigenfunction 
theory for D is derived from the study of the Laplacian in the whole euclidean 
space; "descent" is separation of variables. 

Our ideas can be thought of as an extension of separation of variables. Sup­
pose we are given a homogeneous space V = G/H of G. We want to decompose 
the representation of G on L2(V) (if V has an invariant measure) or on other 
function spaces on V. In rough terms, this is the problem of simultaneous eigen­
function expansion for the operators in the enveloping algebra of G which com­
mute with H. The introduction of more variables is accomplished by finding a 
finite dimensional representation p of G which has an orbit which is GlH. p 
must be "suitable" in order that we can find a system of differential equations in 
the whole representation space which descends properly to this orbit. In what 
follows we illustrate the theory. 

II. Hyperbolicity and symmetric spaces. Let G be a real semisimple Lie 
group in Chevalley (normal) form and let px, . . . , pr be its fundamental repre­
sentations. We set p — p\ © . . . © p*. Now for each / there is a point ut in 
the representation space of p? which is fixed exactly by K. All other points 
which are fixed under p? by K are of the form tiui where tt is a scalar. We call 
{t1u1 + . . . + trur} = T the time axis in analogy to the case G = SL(2, R). T 
is the set of K fixed vectors. 

We call vt the highest weight vector for each p? and we set v = Su,.. Then 
the isotropy group of v is MN. We call p(G)v = F+ the positive light cone. The 
real algebraic closure of T+ is denoted by T and is called the light cone. Note 
that A normalizes MN so A acts on T+ . This action of A coincides with scalar 
multiplication, a fact which is crucial in what follows. 

Another important property of p is that both p(G)u « GlK and T+ » 
G/MN appear in the same representation space. Thus we can study relations be-
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tween the representation theory on G/K and the representation theory on G/MN 
(which is simple). G/MN and G/K can be related even more closely by the fol­
lowing geometric property of p. Denote by RGu the region swept out by apply­
ing scalar multiplication to p(G)u. Then as in the case of SL(2, R), 

PROPOSITION 1. T+ lies in the closure of RGu. 

We can construct a G invariant nondegenerate bilinear form on the space of 
p which we denote by x • x. In terms of this we have a notion of Fourier trans­
form. We shall denote by f, T, etc. the analogs of T, T, etc. in x space. Now, 
f is an algebraic variety so is defined by polynomial equations P{(x) = 0 which 
we can construct explicitly. Under Fourier transform these lead to differential 
operators P.(id/dx). We denote by 8(T) this set of operators. It is 3(T) which is 
the system in many variables described in I above which has the proper descent 
to p(G)u. 

THEOREM 2. 3(r) is hyperbolic with space-like surface p(G)u. More pre­
cisely, we can set up a well-posed Cauchy Problem for p(F) where we give w — 
order W data on p(G)u. 

REMARK. In case G is not in Chevalley form we can make an analogous 
construction. However 9(T) is hyperbolic only for Chevalley forms. In fact if G 
is compact the analog of 9(T) is elliptic. 

III. Energy theory. The ideas that go into Theorem 2 are as follows: 
A. Using the theory of harmonic functions for the Weyl group W9 which 

works because W is generated by reflections, we can find an energy e(f) for solutions 
ƒ of b(T)f - 0 near RGu. The energy is an integral along rp(G)u for any scalar r, of 
a quadratic form in G derivatives of the Cauchy data of ƒ on rp(G)u. The energy is 
independent of r. However, we cannot show directly that it is positive definite. 

B. Cauchy-Koweleski theory. It is not difficult to show that the complex-
analytic Cauchy Problem for 3(T) is well posed on p(G)u. 

C. Limit on T. Using Proposition 1 and A above we show that, for a dense 
set of Cauchy data, the solution ƒ has a limit on I\ The limit of e(/) can be ex­
pressed in terms of scalar derivatives of ƒ on I\ Using Fourier analysis it follows 
that this limit is > 0. Thus e(f) > 0. 

In order to know that e(f) > 0 we need 
D. Uniqueness ofDirichlet Problem. Every suitable solution ƒ of b(f) = 0 

is determined by its restriction to I\ This is proven by writing an explicit formu­
la for ƒ in terms of its Dirichlet data. This generalizes d'Adhemard's formula for 
the wave equation. 

Further consequences of the above are 
E. Plancherel formula for p(G)u. On studying the limit in C and using the 

positive definiteness of e(f) we can compute the Plancherel measure for p(G)u. 
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F. Uniqueness and Paley-Wiener theory. Combining energy theory with B 
shows that there is a domain of dependence for the Cauchy Problem. By general 
principles this uniqueness property implies the Paley-Wiener theorem for p(G)u, 
hence for G/K. 

G. Orbital integrals. From e(f) we derive a bilinear form e(f, g) on solutions 
of 8(F) which is constant on each of the orbits rp(G)u. Choosing g suitably we 
find that the integral of ƒ is constant on all rp(G)u. Using C it has the same val­
ue on T+ . This generalized the known mean-value theory for compact groups. 

IV. Other representations of G. 
H. Parabolic subgroups. Instead of using p we could use other combinations 

of the fundamental representations of G. We can do this in such a way that any 
parabolic subgroup P of G can (in terms of its Levi splitting) take the place of the 
minimal parabolic used in II, III. 

I. Discrete series. Instead of studying the Cauchy Problem we can study the 
Watergate Problem which means that we parametrize solutions ƒ of d(T) by data 
on the time axis T. (We must give infinitely many data.) We show that this leads 
to a well-posed problem. If all the Watergate data are concentrated at t = 0, 
then ƒ vanishes on RGu. Moreover ƒ is small on other orbits of p(G). ƒ is actual­
ly small in r0 = rank K "directions". If r0 = r then the restriction of ƒ to these 
orbits belongs to the discrete series. In fact, all "generic" discrete series can be 
constructed in this manner. 
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