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The duality for crossed products of von Neumann algebras by locally com­
pact abelian groups has been obtained by Takesaki [4]. We shall generalize this 
result to a locally compact (not necessarily abelian) group by using the Fourier 
algebra in place of the dual group. 

Let G denote a locally compact group with a right invariant Haar mea­
sure dt, and M denote a von Neumann algebra over a Hubert space H. By 
an action of G on M we mean a homomorphism o: t GG [-+ otE Aut(Af) such 
that for each x G M the mapping t G G h> ot(x) is a-strongly* continuous. Let 
{7Ta, X} be a covariant representation of {Af, o] on H ® L2(G) defined by 

k W O W = *,(*)«'). * € H ® L\G\ 

\m&s) = {(*r), r,sEG. 

Then the crossed product R(Af; 7ra) of M by G is the von Neumann algebra gener­
ated by n0(M) and X(G). 

THEOREM 1. A necessary and sufficient condition that a mapping a of M 

into M ® L°°(G) be induced by an action o with 

(a(x)ö(s) = o,(x)«s), xEM^GH® L2(G), 

is that a be an isomorphism with the commutative diagram: 

A 

(1) a 

M ® Z 
where (8/X*. 0 =f(st)for fe L°°(G) 

M - • M ® Z°°(G) 

a ® i 

M ® Z"(G) * - ^ M ® Z,°°(G) ® L~(G), 

For the right regular representation XG of G on L2(G), i.e., 

(M*)/X0 s/('*)> feL2(G)9 s,tEG, 

let R(G) denote the von Neumann algebra generated by XG(G). Let y denote 
the isomorphism of R(G) into R(G) ® R(G) defined by 
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T(XG(s)) = \G(s) ® XG(s), seG. 

DEFINITION. For an isomorphism j3 of a von Neumann algebra N into 
N ® R(G) with the commutative diagram: 

N ^ >N ® #(G) 

(2) jS 0® t 

iV ® R(G) - ^ TV ® #(G) ® #(G), 

we define a crossed dual product of N by G as the von Neumann algebra generated 
by p(N) and 1 ® L°°(G). We denote it by Rd(N; 0). 

THEOREM 2. Z,er W ara? F be unitaries on tf ® £2(G) ® £2(G) <2e//«ed fty 

(WtYs,t) = &s,ts) and (VÇ)(s, t) = %(st, t). 

If a (resp. j3) is an isomorphism of M (resp. N) into M ® L°°(G) (resp. N ® R(G)) 
with the commutative diagram (1) (resp. (2)), then à (resp. j§) defined by 

Sc(y) = W*(y ® \)W (resp. fi(z) s V(z ® 1)K*) 

fs AW isomorphism of R(M\ a) (resp. Rd(7V; j3)) fwto R(M; a) ® R(G) (resp. 

Rd(N\ j3) ® L°°(G)) with the commutative diagram (2) for R(M; a) and a (resp. 
(l)forRd(N;p)andh 

Making use of the above two theorems we can give the following duality 
theorem for crossed products of von Neumann algebras by locally compact groups. 
When G is abelian, its corollary is nothing but a duality theorem of Takesaki [4]. 

THEOREM 3 (DUALITY). Under the notations in Theorem 2, let o be an 
action of G on M, a = n0, 0 = a, a = /3 and o the action associated with a as in 
Theorem 1. Let IT be a faithful representation of M on H ® L2(G) ® L2(G) such 
that 

(7r(x)Ç)(s,t) = ost_l(x)t;(s,tl 

and let Ax and A2 be a representation and a unitary representation of G on H ® 
L2(G) ® L2(G) defined by 

(At(r)0(st 0 = £fr r-h) and (A2(r)0fc t) = #s, tr), 

respectively. Then Rd(R(M; a); 0) w isomorphic to ir(M) ® B(L2(G)) and the 
isomorphism transforms the action o of G on the former into the action of G on 
the latter given by Ad(A2(r)) ® Ad(XG(r)) for r G G. In particular, 

n(or(x)) = A1(r)ir(x)Al(r)-1 and or(n(x)) = A2(r)ir(x)A2(r)-1. 

When G is unimodular, we can define a unitary U on H ® £2(G) ® L2(G) 
by 
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and a mapping 0' of Rd(N; 0) into Rd(N; (!) ® I°°(G) by 

0'(z) = £/(z ® 1)U*. 

Then p is an isomorphism which makes commutative the diagram (1) for Rd(N',fi) 
and 0'. 

COROLLARY. Assume that G is unimodular. Under the notations in 
Theorem 2, let o be an action of G on M, a = ir0, 0 = a, a = j3 fltó a ?/ze ûfĉ b« 
associated with a as in Theorem 1. Then Rd(R(M', a); 0) is isomorphic to M ® 
B(L2(G)) and the isomorphism transforms the action o* of G on the former into 
the action of G on the latter given by or ® Ad(\'G(r)) for r EG, where \'G is the 
left regular representation of G on L2(G). 

THEOREM 4 (DUALITY). Under the notations in Theorem 2, R(Rd(N; j3); a) 
is isomorphic to N ® B(L2(G)). 

The author wants to express his hearty gratitude to Professor M. Takesaki 
for his instructive discussion and encouragement. 
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