DUALITY FOR CROSSED PRODUCTS OF VON NEUMANN ALGEBRAS BY LOCALLY COMPACT GROUPS

BY YOSHIOMI NAKAGAMI

Communicated June 30, 1975

The duality for crossed products of von Neumann algebras by locally compact abelian groups has been obtained by Takesaki [4]. We shall generalize this result to a locally compact (not necessarily abelian) group by using the Fourier algebra in place of the dual group.

Let G denote a locally compact group with a right invariant Haar measure dt, and M denote a von Neumann algebra over a Hilbert space H. By an action of G on M we mean a homomorphism $\sigma\colon t\in G\mapsto \sigma_t\in \operatorname{Aut}(M)$ such that for each $x\in M$ the mapping $t\in G\mapsto \sigma_t(x)$ is σ -strongly* continuous. Let $\{\pi_\sigma,\,\lambda\}$ be a covariant representation of $\{M,\,\sigma\}$ on $H\otimes L^2(G)$ defined by

$$\begin{cases} (\pi_{\sigma}(x)\xi)(s) \equiv \sigma_{s}(x)\xi(s), & \xi \in \mathbb{H} \otimes L^{2}(G), \\ \lambda(r)\xi(s) \equiv \xi(sr), & r, s \in G. \end{cases}$$

Then the crossed product $R(M; \pi_{\sigma})$ of M by G is the von Neumann algebra generated by $\pi_{\sigma}(M)$ and $\lambda(G)$.

Theorem 1. A necessary and sufficient condition that a mapping α of M into $M \otimes L^{\infty}(G)$ be induced by an action σ with

$$(\alpha(x)\xi)(s) = \sigma_s(x)\xi(s), \quad x \in M, \, \xi \in \mathcal{H} \otimes L^2(G),$$

is that α be an isomorphism with the commutative diagram:

where $(\delta f)(s, t) \equiv f(st)$ for $f \in L^{\infty}(G)$.

For the right regular representation λ_G of G on $L^2(G)$, i.e.,

$$(\lambda_G(s)f)(t) \equiv f(ts), \quad f \in L^2(G), s, t \in G,$$

let R(G) denote the von Neumann algebra generated by $\lambda_G(G)$. Let γ denote the isomorphism of R(G) into $R(G) \otimes R(G)$ defined by

AMS (MOS) subject classifications (1970). Primary 46L10. Key words and phrases. von Neumann algebra, crossed product, duality.

$$\gamma(\lambda_G(s)) \equiv \lambda_G(s) \otimes \lambda_G(s), \quad s \in G.$$

DEFINITION. For an isomorphism β of a von Neumann algebra N into $N \otimes R(G)$ with the commutative diagram:

we define a crossed dual product of N by G as the von Neumann algebra generated by $\beta(N)$ and $1 \otimes L^{\infty}(G)$. We denote it by $R_d(N; \beta)$.

THEOREM 2. Let W and V be unitaries on $H \otimes L^2(G) \otimes L^2(G)$ defined by $(W\xi)(s, t) \equiv \xi(s, ts)$ and $(V\xi)(s, t) \equiv \xi(st, t)$.

If α (resp. β) is an isomorphism of M (resp. N) into $M \otimes L^{\infty}(G)$ (resp. $N \otimes R(G)$) with the commutative diagram (1) (resp. (2)), then $\hat{\alpha}$ (resp. $\hat{\beta}$) defined by

$$\hat{\alpha}(y) \equiv W^*(y \otimes 1)W \quad (resp. \ \hat{\beta}(z) \equiv V(z \otimes 1)V^*)$$

is an isomorphism of $R(M; \alpha)$ (resp. $R_d(N; \beta)$) into $R(M; \alpha) \otimes R(G)$ (resp. $R_d(N; \beta) \otimes L^{\infty}(G)$) with the commutative diagram (2) for $R(M; \alpha)$ and $\hat{\alpha}$ (resp. (1) for $R_d(N; \beta)$ and $\hat{\beta}$).

Making use of the above two theorems we can give the following duality theorem for crossed products of von Neumann algebras by locally compact groups. When G is abelian, its corollary is nothing but a duality theorem of Takesaki [4].

Theorem 3 (Duality). Under the notations in Theorem 2, let σ be an action of G on M, $\alpha \equiv \pi_{\sigma}$, $\beta \equiv \hat{\alpha}$, $\widetilde{\alpha} \equiv \hat{\beta}$ and $\widetilde{\sigma}$ the action associated with $\widetilde{\alpha}$ as in Theorem 1. Let π be a faithful representation of M on $H \otimes L^2(G) \otimes L^2(G)$ such that

$$(\pi(x)\xi)(s, t) = \sigma_{s,t-1}(x)\xi(s, t),$$

and let Λ_1 and Λ_2 be a representation and a unitary representation of G on $H\otimes L^2(G)\otimes L^2(G)$ defined by

$$(\Lambda_1(r)\xi)(s, t) \equiv \xi(s, r^{-1}t)$$
 and $(\Lambda_2(r)\xi)(s, t) \equiv \xi(s, tr)$,

respectively. Then $R_d(R(M; \alpha); \beta)$ is isomorphic to $\pi(M) \otimes B(L^2(G))$ and the isomorphism transforms the action σ of G on the former into the action of G on the latter given by $Ad(\Lambda_2(r)) \otimes Ad(\Lambda_G(r))$ for $r \in G$. In particular,

$$\pi(\sigma_r(x)) = \Lambda_1(r)\pi(x)\Lambda_1(r)^{-1} \quad and \quad \widetilde{\sigma}_r(\pi(x)) = \Lambda_2(r)\pi(x)\Lambda_2(r)^{-1} \,.$$

When G is unimodular, we can define a unitary U on $\mathcal{H}\otimes L^2(G)\otimes L^2(G)$ by

$$(U\xi)(s, t) \equiv \Delta(t)^{1/2} \xi(t^{-1}s, t),$$

and a mapping $\hat{\beta}'$ of $R_d(N; \beta)$ into $R_d(N; \beta) \otimes L^{\infty}(G)$ by

$$\hat{\beta}'(z) \equiv U(z \otimes 1)U^*.$$

Then $\hat{\beta}'$ is an isomorphism which makes commutative the diagram (1) for $R_d(N; \beta)$ and $\hat{\beta}'$.

COROLLARY. Assume that G is unimodular. Under the notations in Theorem 2, let σ be an action of G on M, $\alpha \equiv \pi_{\sigma}$, $\beta \equiv \hat{\alpha}$, $\widetilde{\alpha} \equiv \hat{\beta}'$ and $\widetilde{\sigma}$ the action associated with $\widetilde{\alpha}$ as in Theorem 1. Then $R_d(R(M;\alpha);\beta)$ is isomorphic to $M\otimes B(L^2(G))$ and the isomorphism transforms the action $\widetilde{\sigma}$ of G on the former into the action of G on the latter given by $\sigma_r \otimes \operatorname{Ad}(\lambda'_G(r))$ for $r \in G$, where λ'_G is the left regular representation of G on $L^2(G)$.

THEOREM 4 (DUALITY). Under the notations in Theorem 2, $R(R_d(N; \beta); \alpha)$ is isomorphic to $N \otimes B(L^2(G))$.

The author wants to express his hearty gratitude to Professor M. Takesaki for his instructive discussion and encouragement.

REFERENCES

- G. W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313-326. MR 11, 10.
- 2. A. Ikunishi and Y. Nakagami, On invariants $G(\sigma)$ and $\Gamma(\sigma)$ for an automorphism group of a von Neumann algebra, Publ. RIMS, Kyoto, Univ. (to appear).
- 3. M. Takesaki, *Duality and von Neumann algebras*, Lectures on Operator Algebras (K. H. Hofmann, editor), Lecture Notes in Math., vol. 247, Springer-Verlag, Berlin, 1972, pp. 666-779.
- 4. ———, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, TOKYO 152, JAPAN