NORMAL SELF-INTERSECTIONS OF THE CHARACTERISTIC VARIETY

BY RICHARD B. MELROSE¹

Communicated by I. M. Singer, May 27, 1975

Let $P=P_1P_2+Q$ be a linear partial differential operator on \mathbf{R}^N with P_1 and P_2 , of orders m_1 and m_2 , respectively, strictly hyperbolic with respect to the first variable and Q of order m_1+m_2-2 . Although the characteristic variety of P may have self-intersections, the hyperbolicity of P_1 and P_2 implies local solvability for Pu=f; indeed the Cauchy problem for P is locally solvable. In this note we shall consider the propagation of singularities near the simplest type of point $z_0 \in T^*\mathbf{R}^N \setminus 0$ where the principal symbol $p=p_1p_2$ of P has a multiple zero.

We shall suppose that the characteristic varieties $A(P_1)$ and $A(P_2)$ of P_1 and P_2 intersect normally at z_0 , that is, $dp_1(z_0)$ and $dp_2(z_0)$ are linear independent. In addition, it will be assumed that the Poisson bracket $\{p_1, p_2\}(z_0) \neq 0$. This latter assumption means that the Hamiltonian vector fields H_{p_1} and H_{p_2} are not tangent to $A(P_1) \cap A(P_2)$ at z_0 . So, the two forward pointing bicharacteristics (of p_1 and p_2) through p_2 0 consist, near p_2 0, of nonsingular points of p_2 0 where p_2 1 itself. Let these curves be denoted by p_2 2 and p_2 3 and p_2 4 where p_2 3 is an open interval containing p_2 6, p_2 7 and p_3 8 and p_3 9 and p_3 9. It will be assumed that p_3 9 is chosen so small that

(1)
$$c_i(I) \cap A(P_j) = \{z_0\}, \quad i \neq j.$$

If I^+ (I^-) is the open interval consisting of the positive (negative) points in I then, by Hörmander's Theorem [4, Theorem 3.2.1], if $u \in \mathcal{D}'(\mathbf{R}^N)$, $z_0 \notin WF(Pu)$ and I is chosen so small that

(2)
$$c_i(I) \cap WF(Pu) = \emptyset, \quad i = 1, 2,$$

then either $c_i(I^\pm) \subset WF(u)$ or $c_i(I^\pm) \cap WF(u) = \emptyset$ separately for the four choices of sign and bicharacteristic. Hörmander's Theorem does not, however, give any information as to whether $z_0 \in WF(u)$ or not.

THEOREM. Suppose $A(P_1)$ and $A(P_2)$ intersect normally at z_0 and that $\{p_1, p_2\}(z_0) \neq 0$. If $u \in \mathcal{D}'(\mathbf{R}^N)$, $z_0 \notin WF(Pu)$ and I is chosen so small that (1) and (2) hold, then either $c_i(I^+) \cap WF(u) = \emptyset$ for i = 1, 2, or $c_i(I^-) \cap WF(u) = \emptyset$ for i = 1, 2 implies $z_0 \notin WF(u)$ and $c_i(I) \cap WF(u) = \emptyset$ for i = 1, 2.

AMS (MOS) subject classifications (1970). Primary 35D10, 35P20.

¹This research, carried out at MIT, was supported in part by a grant from the Science Research Council.

Copyright © 1975, American Mathematical Society

The main part of the proof consists in the construction of suitable micro-localizing pseudodifferential operators and this is carried out by a modification of the method used in Nirenberg's paper [5].

Similar results hold for first order symmetric hyperbolic systems and so lead to generalized Poisson relations for the spectral measure of the associated elliptic operator (compare Chazarain [1], Duistermaat and Guillemin [2]). Let A be an $m \times m$ first order system of classical elliptic pseudodifferential operators defined, for simplicity, on the m-fold direct sum of the half-density bundle over a compact manifold M and suppose that the principal symbol a of A is symmetric and uniformly diagonalizable (i.e. has eigenvalues and eigenvectors smoothly defined on $T^*M\setminus 0$). Suppose further that at each point $z \in T^*M\setminus 0$ either a has m distinct eigenvalues or m-1 distinct eigenvalues and the coincident eigenvalues $\lambda_i(z) = \lambda_j(z)$, $i \neq j$, satisfy $d\lambda_i(z) \neq d\lambda_j(z)$ and $\{\lambda_i, \lambda_j\}(z) \neq 0$. Then the spectral density of A, $\sigma(\mu) = \sum_k \delta(\mu - \mu_k),$

where $\{\mu_k\}$ are the eigenvalues of A, satisfies the following

Theorem. The singularities of the Fourier transform $\hat{\sigma}(t)$ of σ occur only at points |t|=T such that there exists a piecewise smooth closed curve of parameter length T each of whose smooth segments is an integral curve of one of the Hamiltonian fields H_{λ_i} .

The proofs of these and other related results will appear elsewhere. It should be noted that the proof is not constructive and does not, for example, produce a microlocal parametrix for P or $\partial_t - A$ from which the singularities can be computed directly (see, however, Guillemin [3]).

The author wishes to thank Victor Guillemin, David Schaeffer and Gunther Uhlmann for helpful conversations.

REFERENCES

- 1. J. Chazarain, Formule de Poisson pour les varietes riemannienes, Invent. Math. 24 (1974), 65-82.
- 2. J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. (to appear).
 - 3. V. Guillemin, Singular symbols (manuscript) (1974).
- 4. L. Hörmander, On the existence and the regularity of solutions of linear pseudodifferential equations, Enseignement Math. (2) 17 (1971), 99-163. MR 48 #9458.
- 5. L. Nirenberg, Lectures on linear partial differential equations, Regional Conf. Series in Math., no. 17, Amer. Math. Soc., Providence, R. I., 1973.
 - ST. JOHN'S COLLEGE, CAMBRIDGE, ENGLAND