
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 81, Number 5, September 1975 

ERGODIC EQUIVALENCE RELATIONS, 

COHOMOLOGY, AND VON NEUMANN ALGEBRAS 

BY JACOB FELDMAN1 AND CALVIN C. MOORE2 

Communicated April 3, 1975 

1. Introduction. Throughout, (X, B) will be a standard Borel space, G some 
countable group of automorphisms, RG the equivalence relation {(x, g • x), g G G}, 

and fi a a-finite measure on X. For /x quasi-invariant, the orbit structure of the 
action has been studied by Dye [4], [5], Krieger [8] - [13] , and others. Here, 
ignoring G and focusing on RG via an axiomatization, and studying a cohomology 
for RG, we obtain a variety of results about group actions and von Neumann alge­
bras. The major results are stated below. 

2. Equivalence relations. R will be an equivalence relation on X with all 

equivalence classes countable, and R G B x B. 

THEOREM 1. Every R is an RG. 

Properties of G-actions translate into properties of RG which can be stated 

with no G in sight, e.g., quasi-invariance, ergodicity. Let ju be quasi-invariant, and 

let C = 8 x BLR a nd Pi(x, y) = x, Pr(x, y) = y. Now C has a natural measure 

class as follows: 

THEOREM 2. The formula vt(C) = f\Pf * (x) n C\di4x), where \*\is cardinality, 

and a similar formula for vr define equivalent o-finite measures on C. 

The Radon-Nikodym derivative is the function D = dvr\dvx onR. UR=RG, 

then d(ji • g)/djji(x) = D(x, gx). Moreover, D is a cocycle in that D(x, y)D(y, z) 

= D(x, z) a.e. and the D' arising from a \xf equivalent to /i is cohomologous to D. 

For ergodic R, one has a classification into types which are ln, n = 1, . . . , 
°°, I I j , 11^ and III as in [3]. For j = 1,2, relations R. on (Xj, B;-, ty) are isomor­
phic if there is a Borel isomorphism a: Xx —• X2 with p / i o f l " 1 and R2(a(x)) 

= a(Rx(xy) a.e. If the R- are ergodic, they are principal groupoids and, hence, 
define virtual groups [14]. 

THEOREM 3. Rx and R2 define isomorphic virtual groups iff each is isomor­
phic to a restriction of the other, where the restriction of R to H is R O H x H. 
Hence, the two notions of isomorphism coincide if Rx and R2 are both of infinite 
type. 

Hyperfiniteness in terms of R becomes: 3 Rn t R with \Rn(x)\ finite V«, Vx 
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3. Cohomology. For simplicity assume that R is ergodic and let Rn = {(xQi 

. . . , xn), x0 ~ • • • ~ xn} C I M + 1 with the natural measure class generalizing 
that of Theorem 2. An R module is an abelian polonais group with a Borel map 
u of R into Aut(4) with u(x, y)u(yf z) = u(x, z). Define cochain groups 
Cn(R, A) as the Borel functions mod null functions from Rn to A with cobound-
ary operators (dnc)(x0, . . . , xn + 1) = S ; ( - ï)J'c(x0, . . . , xf9 . . . , xn) if u = 1 
and with a slight modification if M =£ 1. We define cohomology groups Hn(G, A) 

of this complex; also for n = 1, we allow A to be nonabelian and obtain a coho­
mology set. These groups were introduced in the virtual group context by West-
man [17]. We show how to axiomatize these groups and show that they are 
unique solutions to a universal problem. If R ~ RG with G acting freely, one may 
identify Hn(R, A) with Hn(G, U{X, A)), where U(X, A) is Borel functions mod 
null functions from X to A with G operating suitably. If R is hyperfinite and not 
type ln so that R = Rz, with Z acting freely, then Hn(R, A) = 0 for all n > 2. 
Since any action of an abelian group is hyperfinite (Dye [5], Feldman and Lind 
[6]), one can obtain results of the following kind: 

THEOREM 4. If s and t are commuting ergodic independent (sn =£ tm) 

automorphisms of(X, JU), then for any Borel function f from X to the circle T, 

there exist Borel functions g and h to T so that f = ((g ° s)/g)((h o t)/h) a.e. 

Generalizing Mackey [14], we define for c G ZX(R, A) a relation R(c) on 
XxAby (x, a) ~ (x1, a1) iff x ~ x1 and c(x, xl)a = a1, where A is an abelian 
locally compact R module with trivial action. Then A acts by right translations 
on X x A and preserves R(c) and so acts via Mackey's point realization theorem 
on Z = X x A/R(c), where R(c) is a countably separated equivalence relation con­
taining R(c) whose image in the measure algebra of X x A coincides with the 
R(c) invariant sets. This ergodic action of A is called the range of c, and depends 
only on the class of c. The isotropy group Az of A at z G Z is an a.e. constant 
closed subgroup A(c) which is called the proper range of c. Now if A* is the one 
point compactification of A, we generalize [12] and define the asymptotic range 
r*(c) as the intersection over all subsets B of X of positive measure of the essen­
tial ranges in A* of c restricted to B x B, and r*(c) = r*(c) n A. An important 
result is 

THEOREM 5. r*(c) ö 0 c/osed subgroup of A depending only on the class 
of c and equals the proper range A(c) of c. 

For A = R and c = log D, this was done by enumeration of cases in [7], 
and there is some overlap with results in [2]. We also have 

THEOREM 6. For A = Rn + Zm, c ~ 0 iff °° £ r*(c). 

As a corollary we obtain the result that if log D is bounded, then there is 

an equivalent invariant measure, a result that also follows from Theorem 1 and [15]. 
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4. von Neumann algebras. Generalizing the Zeller-Meier generalization [18] 
of the Murray-von Neumann group measure space factors, we construct for an 
ergodic relation R and t G H2(R, T) a factor M(R, t) which we view as the "twisted 
algebra of matrices over R". For t = 1 this factor is constructed (less transparently) 
in [10]. Our Hubert space H is L2(R, vj), and we pick c S t normalized to be 
skew symmetric. For F G L°°(R) which is band limited in that \{x\F(x, y) + 0 
and 0 TÉ F(y, x)}\ is bounded, one defines an operator MF on H by 

(MFf)(xf z) = £ ƒ(*, y)F(yf z)c(x, y, z). 
y~x 

These operators form a *-algebra whose weak closure is a factor M(R, i) depend­
ing only on t and not on c. The commutant has a similar form. The indicator 
function of the diagonal A is a separating and cyclic vector, and the diagonal sub-
algebra A = {MF, F = 0 off A} is a maximal abelian subalgebra which is regular 
by Theorem 1. Moreover, there is a normal faithful conditional expectation E of 
M(R9 t) onto A. If M is any factor with abelian subalgebra A satisfying these con­
ditions, we call A a Cartan subalgebra [19]. One of our major results is a converse 
of this construction. 

THEOREM 7. If A is a Cartan subalgebra of the factor M, then M - M(R, t) 
for suitable R and t with A as diagonal subalgebra for any R'. 

Of course, if M is a finite factor, the E always exists. One may ask if 
M(R, t) determines R and t. If we restrict to hyperfinite R (where t = 1 automat­
ically), then M(R, 1) does indeed determine R by [4], [5], [6]. A major open 
problem is whether we get all factors as M(R, t)9s. We note that Connes [1] con­
structs an M(R, t) which is not an M(R', 1). 

Our final results concern automorphisms and conjugacy questions. If A is 
the diagonal subalgebra of M = M(R, t)9 let Out(Af, A) be the subgroup of the 
"outer" automorphism group of M which maps A into something inner conjugate 
to A. Let Out(#, i) be the group of "outer" automorphisms of the relation R 

fixing the cohomology class /. We have a structure theorem for Out(Af, A) general­
izing results in [16]. 

THEOREM 8. We have an exact sequence 1 -> HX(R, T) -> Out(Af, A) -> 

Out(R, f ) - > l -

Finally, let At be two Cartan subalgebras of M with conditional expectations 
Ev The restriction of Ex to A2 gives rise to a unique positive measure y on 
Xx x X2 (where At = L°°(Xi9 /xf.)) whose disintegration products yx (x E Xx) 

with respect to projection to Xx are determined by Et(a)(x) = ƒa(y)dyx(y) a.e. 
for a G A2 = L°°(X2, ju2). Let us say that A2 is discrete over Ax if a.a. yx are 
atomic measures. 

THEOREM 9. If M is an infinite factor, Ay and A2 are inner conjugate iff 

A2 is discrete over Ax and A x is discrete over A2. 
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ADDED IN PROOF. Theorem 5, for hyperfinite R, was also obtained by 
K. Schmidt (Cohomology and skew products of ergodic transformations, University 
of Warwick, Coventry, England, preprint). 
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