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Khintchine's inequality [4] states that if {Xf. j — 1, . . . , N} are indepen­
dent identically distributed Bernoulli random variables (Xj = ± 1 with equal prob­
abilities), then for any choice of real ar-, and any m = 2,3, . . . ,X — ^JÛJXJ 

satisfies 

(1) E(X2m) < ((2m)\/2mm\)(E(X2))m. 

This inequality implies [9, Chapter 5] that for 0 < p < °°, there exist positive 
constants A and B depending only on p (with B2m = ((2m)l/2mml)1 t2m) such 
that 
(2) Ap\\X\\2<\\X\\p<Bp\\X\\2 

where \\X\\ denotes the p-norm, (E(\X\p))llp. Khintchine's inequality in this 
form has many applications in which the {XA are generally represented as 
Rademacher functions [9], [7], [3]. 

In this note we give an extension of Khintchine's inequality from the 
Bernoulli case to that of random variables of the following type: 

DEFINITION. A random variable X is of type L if its moment generating 
function Ex(z) = E(exp(zX)) satisfies 

(i) 3CB Ex(z) < exp(Cz2) for all real z and 

(ii) Ex(
z) = 0 =* z = ia. for some real a. 

Symmetric random variables satisfying condition (i) have been called sub-

gaussian by Kahane; they satisfy an inequality similar to but weaker than (1) 
[2, p. 87]. 

Theorem 1 below extends Khintchine's inequality to arbitrary linear com­
binations of independent random variables of type L while Theorem 2 treats the 
case of positive linear combinations of type L random variables with a particular 
kind of dependence (such as arises in models of ferromagnets). Complete proofs 
of these theorems together with further results concerning random variables of 
type L and applications of these results to statistical mechanics and quantum 
field theory will appear in [6] ? 

THEOREM 1. If {Xj}^=1 are independent {not necessarily identically dis­
tributed) random variables of type L, then the inequality (1) applies for any 
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choice of real af and any m = 2, 3, . . . to X - X^a^Xj. 

SKETCH OF PROOF. Since the X- are independent, X is itself of type L. 

Hadamard factorization methods [1, Theorems 2.7.1 and 2.10.1] imply that for 
any random variable X of type L, 

(3) Ex(z) = exp(2>2
2)n(l + (z/a,)2), 

i 

for some b > 0 and 0 < ax < a2 < • • • with 2(1 /ay)2 < °°. We next note that 

Ex(z) = ZE(X")zn/nl so that by (3), 

(4) E(X2)/2 = b+Z(l/aj)
2. 

j 

Now each Taylor coefficient of (1 4- (z/oy)2) is bounded by the corresponding 
Taylor coefficient of exp((z/a-)2) from which it follows by (3) and (4) that each 
Taylor coefficient of Ex(

z) is bounded by the corresponding one of 
exp(z2E(X2)/2) which yields (1). 

REMARK. X may satisfy (1) without being of type L as can be seen by 
considering the probability distribution 

(1 - p)8(x) + p(8(x - 1 ) 4 - 3(x 4- l))/2 for 1/3 < 0 < 1/2. 

THEOREM 2. Suppose {YjW=l are random variables whose joint probability 

distribution p on RN is of the form 

/ N \ N 

(5) p(yv ...,yN) = C exP Z Jjkyfyk) U M/O7), 
U * = i / /=i 

with Jjk > 0 V/, k, and with each ^ an even measure satisfying: 

(a) ƒ exp(by2)diij(y) < °° Vft > 0, and 
(b) ƒ exp(zy)dpj(y) = 0 => z = ia for some real a; 

then for any choice of X;- > 0, X = S Xy Fy /s o / /ype L ^«<i ^ws satisfies (1) 
(w = 2, 3, . . . ). 

SKETCH OF PROOF. Theorem 2 follows directly from the proof of Theorem 
1 combined with a general version of the (Statistical Mechanics) Lee-Yang 
Theorem [5, Theorem 1.1]. 

Examples of measures p. satisfying (a) and (b)3 (and thus examples of type 
L random variables) include: 

(6) M(J>) = É t ( r ( « - 2*)), n = 1, 2, . . . 
fc=0 

(7) dp/dy=\ A>0, 
10, \y\>A, 

3Many other examples can be found in various of Polya's papers on the location of 
zeros of entire functions. 
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(1 - 7 2 ) W - 2 ) / 2 f | v | < l , 
v ' } ^ d>o, 
0, | J > | > 1 , 

(9) dfi/dy = exp(-X cosh y), X > 0, 

(10) dn/dy = exp(-«y4 - by2), a>0 [8]. 

When d is an integer, example (8) is the one-dimensional marginal distribution of 
the uniform distribution on the surface of the unit d-sphere (in R d + 1 ) . 
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