WHEN IS A MANIFOLD A LEAF OF SOME FOLIATION?

BY JONATHAN D. SONDOW1

Communicated by Glen E. Bredon, February 4, 1975

Given a connected smooth open manifold L, does there exist a compact manifold M and a C^r codimension q foliation of M with a leaf diffeomorphic to L? Here $1 \le r \le \infty$. Most of our results are for q = 1, but note that if the answer is yes for q then it is yes for any q' > q. Theorem 1 gives four conditions on L any one of which is sufficient, and the Corollary provides interesting examples where L is a surface. We have found no necessary condition in general, but Theorem 2 gives a strong necessary condition on the ends of L in order that L be a codimension one leaf each of whose ends has only one asymptote. Details and proofs will appear elsewhere.

THEOREM 1. L is diffeomorphic to a leaf of a C^r codimension q foliation of some compact manifold if any one of the following conditions is satisfied (q = 1 except possibly in condition 1.4).

- 1.1. L is diffeomorphic to the interior of a compact manifold-with-boundary $(r = \infty \text{ and } L \text{ will be a proper leaf})$.
- 1.2. $L = L_1 \# L_2$ where L_1 and L_2 are proper leaves of C^r codimension one foliations of compact orientable manifolds.
- 1.3. $L = L_1 X$ where L_1 is a leaf of a C^r codimension one foliation of a compact manifold with a closed transversal which intersects L_1 in X.
- 1.4. L is a regular covering space of a compact manifold with covering group which has a C^r action on a connected compact q-manifold with a free orbit. (If the orbit is discrete, the leaf L will be proper.)

Recall (see e.g. [2]) that an end ϵ of a connected manifold is determined by a sequence $U_1 \supset U_2 \supset \ldots$ of unbounded components of the complements of compact sets such that $\bigcap_{i=1}^{\infty} \overline{U}_i = \emptyset$. Another such sequence $V_1 \supset V_2 \supset \ldots$ determines the same end if every U_i contains some V_j . Each U_i is called a neighborhood of ϵ . Define ϵ to be boundable if it has a closed neighborhood of the form $B \times [0, \infty)$ where B is a connected compact manifold.

AMS (MOS) subject classifications (1970). Primary 57D15.

¹ This work partially supported by NSF grant GP29265.

COROLLARY. Every orientable 2-manifold with a finite number of ends is a proper leaf of a C^r foliation of a compact 3-manifold, where r = 1 or $r = \infty$ depending on whether the number of nonboundable ends is odd or even, respectively.

If ϵ is an end of a leaf L of a foliation of a manifold M, define the asymptote set A_{ϵ} of ϵ to be $\bigcap_{i=1}^{\infty} \operatorname{Cl}(U_i)$, where ϵ is determined by neighborhoods $U_1 \supset U_2 \supset \ldots$ in L and $\operatorname{Cl}(U_i)$ denotes the closure of U_i in M. Then A_{ϵ} is a well-defined closed union of leaves and is connected if M is compact. Define a leaf L to be nice if A_{ϵ} is a single leaf for every end ϵ of L. Note that a nice leaf is proper and that A_{ϵ} is compact if M is compact. Finally, say that an end ϵ of a manifold L is an infinite repetition if some closed neighborhood in L of ϵ is of the form $W \cup_f W \cup_f \ldots$ where W is a connected compact manifold-with-boundary, $\operatorname{Bd} W$ has two components $\operatorname{Bd}_{-}W$ and $\operatorname{Bd}_{+}W$, and $f\colon \operatorname{Bd}_{+}W \longrightarrow \operatorname{Bd}_{-}W$ is a diffeomorphism.

THEOREM 2. If L is a nice leaf of a C^1 codimension one foliation of a compact manifold then L has only a finite number of ends and each one is an infinite repetition.

The proof uses the following two theorems, of which the first is a generalization of Reeb's first stability theorem in [3] and the second is proved using the framed surgery method of [1].

THEOREM 3. Let M be a (not necessarily compact) manifold-with-(possibly empty) boundary with a codimension q foliation transverse to Bd M. Let A be a compact leaf and let D be a q-disk transverse to the foliation and cutting A in exactly one point x_0 . Suppose there exists a point x in D such that each element of the holonomy group of A has a representative local diffeomorphism of D whose domain contains x and which leaves x fixed. If x is sufficiently closed to x_0 then the leaf through x is diffeomorphic to A.

THEOREM 4. If $h: \Pi_1 A \to \mathbb{Z}$ is a surjection, where A is a connected compact manifold, then there exists a smooth map $g: A \to S^1$ such that $h = g_*: \Pi_1 A \to \Pi_1 S^1 = \mathbb{Z}$ and for some regular value v in S^1 , the manifold $g^{-1}(v)$ is connected and does not separate A.

REFERENCES

1. W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153-160. MR 33 #3309.

- 2. H. Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), 692-713.
- 3. G. Reeb, Sur certains propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no. 1183, = Publ. Inst. Math. Univ. Strasbourg 11, Hermann, Paris, 1952, pp. 91-154, 157-158. MR 14, 1113.

DEPARTMENT OF MATHEMATICS, CITY COLLEGE, NEW YORK, NEW YORK 10031