ON THE R-FORMS OF CERTAIN ALGEBRAIC VARIETIES

BY STEPHEN KUDLA

Communicated by Dock Rim, October 14, 1974

In this note we determine explicitly the inequivalent models over \mathbf{R} of certain varieties $U = \Gamma \backslash H^n$ where Γ is a unit group of a totally indefinite quaternion algebra over a totally real number field k, $|k:\mathbf{Q}|=n$, and H= upper half-plane. For each model defined over \mathbf{R} we give a formula for the number of connected components of the manifold of real points of U.

1. Let A be a totally indefinite division quaternion algebra over a totally real number field k, s a maximal order in A, and $\Gamma = \{\gamma \in \textcircled{s}^{\times} \text{ with reduced norm } \nu(\gamma) = 1\}$. We fix an isomorphism $\lambda \colon A_R = A \otimes_Q R \cong M_2(R)^n$, $n = |k \colon Q|$; then $\lambda(\Gamma \otimes 1) \subset \operatorname{SL}_2(R)^n$ and thus $\Gamma/\pm 1$ acts properly discontinuously on H^n = product of n copies of the upper half-plane via fractional linear transformations. Under certain assumptions on A, $\Gamma/\pm 1$ will act without fixed points so that $U = \Gamma \setminus H^n$ will be a compact complex manifold. It is well known that such U are imbeddable as nonsingular complex projective algebraic varieties.

A real model of U is a pair (U', φ) consisting of a nonsingular projective variety $U' \subset \mathbf{P}^N(\mathbf{C})$ defined over \mathbf{R} and a biholomorphic map $\varphi \colon U \to U'$. Two real models are equivalent if there exists a biregular isomorphism $f \colon U'_1 \to U'_2$ with f defined over \mathbf{R} . An equivalence class of real models will be called an \mathbf{R} -form of U. To each real model (U', φ) of U we associate an antiholomorphic involution $\rho \colon U \to U$ by the formula $\rho(x) = \varphi^{-1}(\overline{\varphi(x)})$. We call the points $x \in U$ such that $x = \rho(x)$ the real points of the model (U', φ) . The following is well known:

LEMMA 1. The R-forms of U are in one-to-one correspondence with the $\operatorname{Aut}^h(U)$ conjugacy classes of antiholomorphic involutions on U. Here $\operatorname{Aut}^h(U) = \operatorname{biholomorphic}$ automorphisms of U.

AMS (MOS) subject classifications (1970). Primary 14G05; Secondary 12A60, 22E40. Key words and phrases. Real algebraic variety, arithmetic of quaternion algebra, outer automorphisms, antiholomorphic involution. 2. Now we have an isomorphism $Isom(U) \cong Aut(A, \Gamma)/\Gamma$ where $Aut(A, \Gamma) = subgroup$ of Aut(A) preserving Γ . Notice that if S = the set of primes P of R at which R is division and Aut(R, S) is the subgroup of Aut(R) which perserves the set R, then

$$1 \longrightarrow A^x/k^x \longrightarrow \operatorname{Aut}(A) \longrightarrow \operatorname{Aut}(k, S) \longrightarrow 1$$
 is exact. Certain subsequences of this describe $\operatorname{Isom}(U)$ and $\operatorname{Aut}^h(U)$.

THEOREM I. (1) Isom(U) \supset Aut^h(U) are described by

$$1 \to I(k)_2 \times Z_2^m \times U_k/U_k^2 \to \text{Isom}(U) \to \text{Aut}(k, S, \Gamma) \to 1$$

$$1 \longrightarrow I(k)_2' \times Z_2^{m'} \times U_k^+/U_k^2 \longrightarrow \operatorname{Aut}^h(U) \longrightarrow \operatorname{Aut}^h(k, S, \Gamma) \longrightarrow 1$$

where the subgroups are isomorphic to $N_A*(\Gamma)/k^\times\Gamma$ and $N_{A}_{,+}(\Gamma)/k^\times\Gamma$ respectively. $I(k)_2=$ the two torsion in the ideal class group I(k) of k, $I(k)_2'=$ image in I(k) of the two torsion of the narrow ideal class group $I_1(k)$, U_k (resp. U_k^+) = units (resp. totally positive units) of k, and the elements of Z_2^m (resp. $Z_2^{m'}$) correspond to tuples $(e_1,\cdots,e_{|S|})$, $e_i=0$, 1, such that $[\prod_{i=1}^{|S|}p_i^{e_i}]\in I(k)^2$ (resp. $[\prod_{i=1}^{|S|}p_i^{e_i}]\in I_1(k)^2$), $p_i\in S$. Finally, there exists a certain 1-cocycle $\tau\to t_{\tau,\mathfrak{G}}$ in $Z^1(\operatorname{Aut}(k,s),I_1(k)/I_1(k)^2I_1^S(k))$ where $I_1^S(k)$ is the subgroup of $I_1(k)$ generated by the primes of S such that $\operatorname{Aut}^h(k,S,\Gamma)=\{\tau\in\operatorname{Aut}(k,S)\text{ such that }t_{\tau,\mathfrak{G}}=1\}$. A similar 1-cocycle with values in $I(k)/I(k)^2I_1^S(k)$ describes $\operatorname{Aut}(k,S,\Gamma)$.

(2) If $\beta \in N_A \times (\Gamma)$ is any element of totally negative reduced norm–such elements exist by strong approximation—then the coset $\beta N_{A \times}(\Gamma)/k^{\times}\Gamma$ in $N_A \times (\Gamma)/k^{\times}\Gamma$ consists of all elements of this group which correspond to antiholomorphic involutions in Isom(U). Finally, since $N_{A \times}(\Gamma)/k^{\times}\Gamma$ is abelian, any two elements x and x' in $\beta N_{A \times}(\Gamma)/k^{\times}\Gamma$ correspond to $\mathrm{Aut}^h(U)$ conjugate involutions $\iff \exists \tau \in \mathrm{Aut}^h(k, S, \Gamma)$ such that $x' = x^{\tau}$.

Corollary. If we let [\beta] denote the element of $I(k)_2 \times Z_2^m \times U_k/U_k^2 \cong N_A \times (\Gamma)/k^{\times}\Gamma$ corresponding to \beta, then the set

$$[\beta] I(k)_2' \times Z_2^{m'} \times U_k^+/U_k^2/\operatorname{Aut}^h(k, S, \Gamma)$$

is in one-to-one correspondence with a subset of the R-forms of U.

REMARK. The theorem classifies only those R-forms coming from involutions which do not permute the factors of H^n ; of course if Aut(k, S) is trivial, these are all.

3. We now restrict ourselves to those antiholomorphic involutions and

R-forms arising from the elements of $N_A \times (\Gamma)/k^{\times}\Gamma$. We have the following criterion:

Lemma 2. An antiholomorphic involution ρ of U has a fixed point \iff $\exists \beta \in N_A \times (\Gamma)$ representing it such that $\beta^2 \in k^{\times}$. More conveniently, suppose $\alpha \in N_A \times (\Gamma)$ is any element representing ρ ; then ρ has a fixed point on $U \iff$ the quadratic extension $k(\sqrt{-\nu(\alpha)}) = K$ is imbeddable in A.

As for the number of connected components of the real points in the case where K is imbeddable, an easy covering space argument together with a computation analogous to that used by Eichler [1] and Shimizu [3] to compute the trace of Hecke operators yields an explicit formula.

Theorem II. The number of connected components of the fixed point set of $\rho = 2^{s-t-1}h(k)^{-1} \sum_{\mathcal{D}_i} h(\mathcal{D}_i) |U_k: N_{K/k}(\mathcal{D}_i^{\times})|$ where s = |S|, t = number of primes of S which are ramified in K/k, h(k) = class number of k, \mathcal{D}_i runs over all orders of K which occur as $\mathcal{D} = \psi^{-1}(\psi(K) \cap \mathfrak{G})$ for ψ an imbedding of K into A which satisfies $\psi(\sqrt{-\nu(\alpha)}) \in N_A \times (\Gamma)$. $h(\mathcal{D}_i) = class$ number of the order \mathcal{D}_i , $\mathcal{D}_i^{\times} = u$ nits of \mathcal{D}_i , and $N_{K/k}$ is the usual norm from K to k.

Notice that the sum is finite because each order of the above sort must contain the order $\mathfrak{G}_K' = \mathfrak{G}_k + \mathfrak{G}_K \cap (k^{\times} \sqrt{-\nu(\alpha)}), \mathfrak{G}_K = maximal \ order \ of \ K.$

I have recently discovered that Professor Shimura is working on similar questions.

REFERENCES

- 1. M. Eichler, Modular correspondences, Lecture notes, Tata Institute of Fundamental Research, Bombay, India.
- 2. M. Kneser, Strong approximation, Algebraic groups and discontinuous subgroups, Proc. Sypos. Pure Math., Amer. Math. Soc., Providence, R. I., 1966, pp. 187-196. MR 35 #4225.
- 3. H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math. (2) 81 (1965), 166–193. MR 30 #1998.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT STONY BROOK, STONY BROOK, NEW YORK 11790