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In [1] Bredon showed that the complex Xa = Sk Ua D
2m has the fixed-

point property with [a] G n2m-i(Sk) being nontrivial, provided that the fol­
lowing condition holds. 

CONDITION (*). k is odd, and r = 2m-k-l<k-l. 

But Xa x Xa admits a fixed-point free map if p, the order of [a], is relatively 
prime to p\ the order of [a']. To show that the analogous situation holds for 
manifolds, let M2m be a 2n-dimensional compact smooth manifold, with 2m < 

n and iti(dM2m) = {1}, of the same homotopy type as Xa9 and put M = 
M2m Uh M2m where h: dM2m —• dM2m is a diffeomorphism. 

THEOREM 1. Suppose in addition to Condition (*) that r is not of the 

form 2s - 2, and that p, the order of [a] in n^m-iC^) zs greater than 2ifr = 

Omod 8. Then the connected sum M # CPn, of M and the complex n-projec-

tive space CPn
9 has the fixed-point property ifn-\-lis relatively prime to 

both p and ip(p) where y(p) is the Euler function of p. 

To prove the theorem one shows that the Lefschetz number L(f) of any 
map ƒ: M # CPn —* M # CPn is given by the equation 

L(f) = - ( K + K) + Qi + / /) + (1 + X + • • • + X") 

where K, K', fi, /z' and X are integers such that 

KK = Xn = fifi', K = fimodq and K = p!mo&q 

with q being a proper divisor of p. In fact q is the order of the class of [a] in 
IIr(5)/image / , where n r(5) is the stable /--stem 7rr+s|s(5*) and / the stable J-

homomorphism irr(SO) —• n r(£), and the conditions on r are required to en­
sure that q > 1 and that the congruence K = ji moàq holds. 
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THEOREM 2. With the assumptions of Theorem 1, suppose that M and 
M' are the doubles, respectively, ofM2m and M2m. Then (M # CPn) x 
(M' # CPn) does not have the fixed-point property if (p, p) = 1. 

To prove Theorem 2 one first retracts (M # CPn) x (M' # CPn) onto 
M2m x M ^ , and then one proceeds to retract M2m x M'2m, according to 
[11, onto Sk considered a submanifold of the diagonal of (M # CPn) x 
(M' #CPn). 

It is a pleasure to express my thanks to Ed Fadell for many useful con­
versations on this topic, and for his critical reading of an earlier manuscript 
which helped greately in the final development of this work. 
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