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We give a comparative study of the zeros of Dirichlet Z-functions. 
Details will appear later. 

1. Let Xi and X2 be distinct primitive characters of the same modulus 
q, and let L(s, x,), for / = 1, 2, be the corresponding Dirichlet /.-functions. 
It is quite natural to guess that L(s, X\) and L(s, X2) have no coincident 
zero. In other words even a single zero will determine a Dirichlet /,-function, 
or more generally, a "zeta-function". To be more precise, we call p a coin­
cident zero of L(s, X\) and L(s, x2) if L(p, X\) = L(p, X2) = 0 ^ th the 
same multiplicities. And we call p a noncoincident zero if it is not coincident. 
Then we can show 

THEOREM 1. Let X\ and X2 ^e distinct primitive characters of the 
same modulus. Then a positive proportion of the zeros of L(s, X\) and 
L(s, X2) are noncoincident 

Next, it is quite natural to guess that the distribution of the zeros of 
L(s, X\) and L(s, x2) are independent. To state our results, let yn(x) be 
the ordinate of the nth zero of L(s, x) such that 0 < 7„(x) < 7w + i(x)-
Further we define 7„(Xi) < 7m(X2) if 7„(Xi) < %n(X2)> and 7„(Xi) < 
ym(X2) <7 , . + i(Xi) < 7 W + 1(X2) < if 7„(Xi) = 7„+i(Xi) = • ' = 
7m(X2) = Tm + 1(x2) = " • " . Then we get 

THEOREM 2. Under the same hypothesis as above, for a positive propor­

tion of yn(X\)X there does not exist a y(x2) for which yn(X\) < 7(X2) < 

T w + i(Xi). 

Further we define A„(Xl, x2) to be n-m if y^xO < 7„(X2) < 
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Tm + 1(Xi). Then we can show 

THEOREM 3. For any positive increasing function $>(«) which tends 
to °° as n tends to °°, we have 

|A„(Xl, X2)l > 2;r(log log n)ll2/*(n) 

for almost all n. In particular, 7„(x2) almost never satisfies Jn(X\) < 

% I ( X 2 ) < % I + I(XI)-

Theorems 1 and 2 come from a mean value theorem about 

f*{S(t + A, Xi) - Sfc Xi) - V(t + A, X2) - S(*> X 2 » M . 

where £(*, x) = 7r_1arg L{Vi + iï, x) as before (cf. [1]). Theorem 3 comes 
from a mean value theorem about ƒ ̂ (S{t, X\) ~" 5(r, x2))Z^. If we use mean 
value theorems about 

£ ' £ ' {S(f + h, X l ) - 5(ft Xi) - (S(t + h, x2) - S(t, x2))}' 
xi x2 

and 

£j:'w,xl)-s(t,x2)y> 
xi x2 

where in the summation X/ runs over all nonprincipal characters of modulus 
q for each / = 1, 2, then we get ^-analogues of our theorems. 

2. As an application of our methods we can get some results about a 
problem of Knapowski-Turàn. Let q be a given fixed positive integer. As­
sume that (b, q) = (d, q) = 1 and b ^ d (mod q). Let x be a character 
of modulus q. We write g(x) = (xfa) - x(<0)M?), and jz(p) = vb>d(p) = 
S^X^xO0)» where x runs over all characters of modulus q and m%(p) 
is the multiplicity of p as a zero of the Dirichlet /.-functions L(s, x). 
Knapowski and Turan proposed the following problem in their study of prime 
numbers: 

Estimate f(T) = 2 0 < I m p < r ; M ( p ) # 0 l (cf. [3]). Concerning this prob­
lem, Katai (unpublished) and Grosswald [2] proved independently the exis­
tence of infinitely many p's with /x(p) =£ 0. Later Turan obtained the fol­
lowing results (cf. [6] ). 

(1) For T> \jj(q) we have the inequality ƒ(7) > ct exp((log T)1,s). 
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(2) Under the assumption of the generalized Riemann hypothesis we 
have f(T)>C2T

1/2 for T>\^{q), where the Cv are numerical constants 
and ty(q) is an explicit function of q. Recently Motohashi [4] obtained the 
following results. 

(1) For T>\Kq) we have f(T) > T1/10(log 7)"3. 
(2) For any sufficiently large T there exists at least one q with 

WTl'2(log TTS1 <q< T^2(log TT51 such that f(T) > 7*/28(log 7 T 4 5 . 
Now we can show 

THEOREM 4. For T>ty(q) we have f (T) > AT log T, where ty(q) 
is some explicit function of q and the positive constant A may depend on 

In fact, we can take \fr(q) = exp(exp(Cx<7)) and A = exp(-C2q) with 
suitable positive absolute constants Ct and C2. 

We prove this from a mean value theorem concerning 

"T £*<x)OS(f + ft.x*)-sfcx*))| 
X 

where x* is the primitive character attached to x* 
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