A COMPARATIVE STUDY OF THE ZEROS OF DIRICHLET L-FUNCTIONS

BY AKIO FUJII1

Communicated by Paul Bateman, June 18, 1974

We give a comparative study of the zeros of Dirichlet L-functions. Details will appear later.

1. Let χ_1 and χ_2 be distinct primitive characters of the same modulus q, and let $L(s, \chi_i)$, for i = 1, 2, be the corresponding Dirichlet L-functions. It is quite natural to guess that $L(s, \chi_1)$ and $L(s, \chi_2)$ have no coincident zero. In other words even a single zero will determine a Dirichlet L-function, or more generally, a "zeta-function". To be more precise, we call ρ a coincident zero of $L(s, \chi_1)$ and $L(s, \chi_2)$ if $L(\rho, \chi_1) = L(\rho, \chi_2) = 0$ with the same multiplicities. And we call ρ a noncoincident zero if it is not coincident. Then we can show

THEOREM 1. Let χ_1 and χ_2 be distinct primitive characters of the same modulus. Then a positive proportion of the zeros of $L(s, \chi_1)$ and $L(s, \chi_2)$ are noncoincident.

Next, it is quite natural to guess that the distribution of the zeros of $L(s, \chi_1)$ and $L(s, \chi_2)$ are independent. To state our results, let $\gamma_n(\chi)$ be the ordinate of the *n*th zero of $L(s, \chi)$ such that $0 \le \gamma_n(\chi) \le \gamma_{n+1}(\chi)$. Further we define $\gamma_n(\chi_1) \le \gamma_m(\chi_2)$ if $\gamma_n(\chi_1) < \gamma_m(\chi_2)$, and $\gamma_n(\chi_1) \le \gamma_m(\chi_2) \le \gamma_{n+1}(\chi_1) \le \gamma_{m+1}(\chi_2) \le \cdots$ if $\gamma_n(\chi_1) = \gamma_{n+1}(\chi_1) = \cdots = \gamma_m(\chi_2) = \gamma_{m+1}(\chi_2) = \cdots$. Then we get

THEOREM 2. Under the same hypothesis as above, for a positive proportion of $\gamma_n(\chi_1)$'s, there does not exist a $\gamma(\chi_2)$ for which $\gamma_n(\chi_1) \leq \gamma(\chi_2) \leq \gamma_{n+1}(\chi_1)$.

Further we define $\Delta_n(\chi_1, \chi_2)$ to be n-m if $\gamma_m(\chi_1) \leq \gamma_n(\chi_2) \leq$

AMS (MOS) subject classifications (1970). Primary 10H05, 10H10. Key words and phrases. Riemann zeta function, distribution of zeros. Supported in part by National Science Foundation grant GP 36418X1.

 $\gamma_{m+1}(\chi_1)$. Then we can show

THEOREM 3. For any positive increasing function $\Phi(n)$ which tends to ∞ as n tends to ∞ , we have

$$|\Delta_n(\chi_1, \chi_2)| > 2\pi (\log \log n)^{1/2} / \Phi(n)$$

for almost all n. In particular, $\gamma_n(\chi_2)$ almost never satisfies $\gamma_n(\chi_1) \leq \gamma_n(\chi_2) \leq \gamma_{n+1}(\chi_1)$.

Theorems 1 and 2 come from a mean value theorem about

$$\int_0^T \{S(t+h,\chi_1) - S(t,\chi_1) - (S(t+h,\chi_2) - S(t,\chi_2))\}^l dt,$$

where $S(t, \chi) = \pi^{-1} \arg L(\frac{1}{2} + it, \chi)$ as before (cf. [1]). Theorem 3 comes from a mean value theorem about $\int_0^T (S(t, \chi_1) - S(t, \chi_2))^l dt$. If we use mean value theorems about

$$\sum_{\chi_1}' \sum_{\chi_2}' \left\{ S(t+h,\,\chi_1) - S(t,\,\chi_1) - \left(S(t+h,\,\chi_2) - S(t,\,\chi_2) \right) \right\}^l$$

and

$$\sum_{\chi_1}' \sum_{\chi_2}' \{ S(t, \chi_1) - S(t, \chi_2) \}^l,$$

where in the summation χ_i runs over all nonprincipal characters of modulus q for each i = 1, 2, then we get q-analogues of our theorems.

2. As an application of our methods we can get some results about a problem of Knapowski-Turán. Let q be a given fixed positive integer. Assume that (b, q) = (d, q) = 1 and $b \not\equiv d \pmod{q}$. Let χ be a character of modulus q. We write $g(\chi) = (\overline{\chi}(b) - \overline{\chi}(d))/\varphi(q)$, and $\mu(\rho) = \mu_{b,d}(\rho) = \sum_{\chi} g(\chi) m_{\chi}(\rho)$, where χ runs over all characters of modulus q and $m_{\chi}(\rho)$ is the multiplicity of ρ as a zero of the Dirichlet L-functions $L(s, \chi)$. Knapowski and Turán proposed the following problem in their study of prime numbers:

Estimate $f(T) = \sum_{0 < \operatorname{Im} \rho < T; \mu(\rho) \neq 0} 1$ (cf. [3]). Concerning this problem, Kátai (unpublished) and Grosswald [2] proved independently the existence of infinitely many ρ 's with $\mu(\rho) \neq 0$. Later Turán obtained the following results (cf. [6]).

(1) For $T > \psi(q)$ we have the inequality $f(T) > c_1 \exp((\log T)^{1/5})$.

- (2) Under the assumption of the generalized Riemann hypothesis we have $f(T) > C_2 T^{1/2}$ for $T > \psi(q)$, where the C_{ν} are numerical constants and $\psi(q)$ is an explicit function of q. Recently Motohashi [4] obtained the following results.
 - (1) For $T > \psi(q)$ we have $f(T) > T^{1/10} (\log T)^{-3}$.
- (2) For any sufficiently large T there exists at least one q with $\frac{1}{2}T^{1/2}(\log T)^{-51} \le q \le T^{1/2}(\log T)^{-51}$ such that $f(T) > T^{3/28}(\log T)^{-45}$.

Now we can show

THEOREM 4. For $T > \psi(q)$ we have $f(T) > AT \log T$, where $\psi(q)$ is some explicit function of q and the positive constant A may depend on q.

In fact, we can take $\psi(q) = \exp(\exp(C_1 q))$ and $A = \exp(-C_2 q)$ with suitable positive absolute constants C_1 and C_2 .

We prove this from a mean value theorem concerning

$$\int_0^T \left| \sum_{\chi} g(\chi)(S(t+h, \chi^*) - S(t, \chi^*)) \right|^l dt,$$

where χ^* is the primitive character attached to χ .

REFERENCES

- 1. A. Fujii, On the distribution of the zeros of the Riemann zeta function in short intervals, Bull. Amer. Math. Soc. 80 (1974), 1339-1342.
- E. Grosswald, Sur une propriété des racines complexes des fonctions L(s, X),
 R. Acad. Sci. Paris Sér. A-B 263 (1966), A447-A450. MR 34 #2542.
- 3. S. Knapowski and P. Turán, Comparative prime number theory. I. Introduction, Acta Math. Acad. Sci. Hungar. 13 (1962), 299-314. MR 26 #3682a.
- 4. Y. Motohashi, On the distribution of the zeros of Dirichlet's L-functions, Acta Arith. 22 (1972), 107-112. MR 46 #1727.
- 5. A. Selberg, Contributions to the theory of Dirichlet's L-functions, Skr. Norske Vid. Akad. Oslo I 1946, no. 3, 62 pp. MR 9, 271.
- 6. P. Turán, On a problem concerning the zeros of Dirichlet's L-functions, Publ. Ramanujan Inst. 1 (1968/69), 95-100. MR 42 #1778.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCE-TON, NEW JERSEY 08540

Current address: Department of Mathematics, Rikkyo University, Tokyo, Japan