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Let L denote a bounded linear Fredholm operator of index /?^0 
mapping a Hubert space H into itself with dimKerL=d and 
dim coKer L=d%. In this note, we consider the solvability of the operator 
equation 

(1) Lu + Nu=f, feH, 

where N is a C1 uniformly bounded (nonlinear) mapping of H into itself. 
If p=0 and N is compact, the solvability of (1) is generally studied by 
means of the Leray-Schauder degree [1]. However for/?>0, more general 
methods of study are required, since A. Svarc [2] showed the homotopy 
classes of (singularity-free) mappings L+N restricted to the unit sphere 
in H are in (1-1) correspondence with the stable homotopy group 
7Tn+v(S

n) (n>p+1). More recently, L. Nirenberg [3] studied criteria for 
solvability of coercive boundary value problems for elliptic systems 
(defined on bounded domains or compact manifolds) of the form (1) 
(with N(u) satisfying additional compactness and asymptotic properties). 
He showed that the criteria could be expressed in terms of the non-
triviality of the stable homotopy class of a certain continuous mapping fx 
of the (rf-l)-sphere S ^ c K e r L into the (^-l)-sphere S^czcoKer L. 
Nirenberg remarks that this criterion is difficult to apply since, in general, 
it is not known how to compute the stable homotopy class of p. 

Here we take up this solvability problem from a simple Hubert space 
point of view and sharpen the results just mentioned in several respects. 
First, we remove the compactness requirement for the operator N, thus 
allowing the applicability of our results to elliptic systems (that can be 
put in the form (1)) defined over unbounded domains and noncompact 
manifolds. More importantly, we derive a criterion for solvability of 
(1) based on the nontriviality of the homotopy class [rj] of a mapping rj 
of sd~1^-Sd*"1 (analogous to the mappings of [3]), provided L "dominates" 
N in the sense described below. More generally, if L "dominates" N 
apart from a finite-dimensional subspace of dimension m (as always occurs 
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in the cases described in [3]), our criterion is based on the nontriviality 
of the homotopy class of the mth iteration of the (Freudenthal) suspension 
homomorphism Em[[x\. In applications to elliptic systems, the integer 
m is found by relating the spectrum of L to the "size" of N. In case L is 
selfadjoint, we find a necessary and sufficient condition for the solvability 
of (1) that implies the openness of the range of L+N. Full details of the 
proofs will be given elsewhere. 

1. The solvability result. In accord with [3], we make the following 
assumptions on the operator N, and its Fréchet derivative JV'(w): 

(I) || JV'(w)|| ^ c , where c is some constant independent of u; 
(II) ^(af)=limr_>00P*{Ar(ra+x)—ƒ} exists uniformly for ||x|| uniformly 

bounded and a e 9H=Ker Ln{w| ||w|| = l} where r](a)9£0. Here P* is 
the canonical projection of H onto coKer L. 

Under these assumptions we prove 

THEOREM 1. Suppose that apart from a finite-dimensional subspace 
^ = K e r L 0 V of H, L dominates N in the sense that 

(2) ||Lw|| ;> (c + s) \\w\\ for some fixed e > 0. 

Then, if dim V=m, equation (1) is solvable provided the mth iterate Em[fj] 
of the suspension homomorphism E of the homotopy class [fj] of fj=rjl\r)\ 
is a nontrivial element of 7rm+d_1(S

m+d*~1). In particular, (1) is solvable 
provided [fj] is nontrivial if either ra=0, p=09 or more generally Em is 
an isomorphism of 7rd_1(S

d*~1) into 7Tm+d_1(S
m+d*~1). 

SKETCH OF PROOF. We begin by replacing equation (1) by the system 

(a) L*Lu + L*Nu - L*/ = 0, 
(3) 
yj (b) P * ( M / - ƒ ) = (). 
This pair implies that Au=Lu+Nu—f e Ker L*n[Ker L*]1 , so that 
(1) is satisfied if (3) holds for some ue H. The converse is immediate. 

To study the solvability of (3a), we utilize hypothesis (I) to reduce (3a) 
to a finite-dimensional system. To this end, let H= Ker L^V^HX where 
Hi= WL and denote by P1 the canonical projection of H onto Hx. Then, 
for w e Hx and arbitrary x G H, (2) implies (L*A'(x)w, w)^£||w||2, where 
A'(x) denotes the Fréchet derivative of A(x). Consequently by Hadamard's 
theorem (see [4, pp. 16-18]), P1L^A{x-\-w) is a global homeomorphism 
of H1 onto itself. Now (3a) is automatically satisfied on Ker L. Hence if 
a tentative solution of the system (3) is written u=z+y+w with z e Ker L, 
y G V, and w e Hl9 it suffices to solve the finite-dimensional system 

(4) L*Ly + Pv(L*N(u) - ƒ ) = 0, Pv = proj H-+V. 



1974] NONLINEAR FREDHOLM OPERATOR EQUATIONS 863 

Now we consider the finite-dimensional system (3b) and (4), and note 
that on a sufficiently large sphere in W, the mapping so defined is homo-
topic to the mapping 

(5) 0(y ,z) = ( y , P * ( t f ( z ) - / ) ) . 

This fact follows since the uniform boundedness of N(u) over H yields 
uniform a priori bounds for ||w|| and | | j | | satisfying (3). Now, let rj(a) be 
the mapping of S^-1->coKer L defined in (II), and rj be the associated 
normalized mapping. Then we observe that the homotopy class [0] of 
the normalized mapping 0 = 0 / | 0 | regarded as a mapping from 
gm+d-i^s™***-1 satisfies [$]=Em[fj], where Em is the mth iterate of the 
Freudenthal suspension homomorphism. Thus the theorem follows. 

2. Necessary and sufficient conditions for solvability. As an application 
of Theorem 1 (in case L is selfadjoint), we prove 

THEOREM 2. Suppose L is selfadjoint, N satisfies the hypotheses of 
Theorem 1, and in addition, for all positive numbers r 

(6) (N(u), a) < (cf>(a), a) 

with 
<Ka) = lim P*N(ra), a e 32 and x !_ Ker L. 

r-*oo 

Then, (a) a necessary and sufficient condition for the solvability of (I) is 

(7) (ƒ, a) < (cf>(a), a) for all aedX; 

and (b) the mapping L+N has open range. 

PROOF OF (a). The necessity of (7) follows immediately from (6) and 
the selfadjointness of L. The sufficiency of (7) follows from Theorem 1 
and hypothesis (II), since in this case index L=0 and for r sufficiently 
large the Brouwer degree 

deg(P7V(z),P/, \z\ <r) = deg(<£,/, \z\ < r) = 1, 

where P denotes the canonical projection of H onto Ker L. 
PROOF OF (b). Let f0 e Range (L+N). Then, to prove L+N has open 

range, it suffices to show that Ss={f\ \\f—/oll#<£} (for some £>0) 
also lies in Range(L+AO. This last fact follows immediately from (7) 
for ƒ G [Ke rL] 1 n5 e for any e and for ||P{/—/0}|| sufficiently small, by 
virtue of the strict inequality in (7) and the finiteness of dim Ker L. 

REMARK. Theorems 1 and 2 are readily applicable to the study of 
boundary value problems of semilinear elliptic systems defined on manifolds 
or domains in Euclidean space RN. In such cases (2) of Theorem 1 will 
always be satisfied for some finite-dimensional subspace W provided the 
spectrum of the associated linear differential operator L is discrete. 

To find relations between the solutions of (1), we prove 
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THEOREM 3. Suppose that in addition to the hypotheses of Theorem 2, N 
is a completely continuous operator. Then, iff G Range(L+7V) (except for a 
possible set of the first Baire category) (i) each solution x of (1) is nondegen-
erate (i.e. L+N'(x) is an invertible linear operator), (ii) the solutions of 
(1) are finite in number, and (iii) if the Fréchet derivative ofN is selfadjoint, 
and off W, L+N'>0, while N'<0 on H, the following Morse inequalities 
hold, where the Mi denote the number of solutions of (I) of Morse index i 
and n=dim[Wn{L<:0}]: 

Mn^l, Mn+1-Mnl> - 1 , 
(8) dim W 

Mn+2 - Mn+1 + Mn ^ 1, • • • , 2 (-l)'M, = ±1. 
i=n 

SKETCH OF PROOF. We first note that the solvability of (1) implies 
(by virtue of Theorem 2) (*) the uniform boundedness of any sequence 
{un} for which \\Lun+Nun—f\\-+0. This implies (by the inverse function 
theorem and Smale's version of Sard's theorem) that, apart from a pos­
sible exceptional set of first Baire category, the solutions of (1) are non-
degenerate and isolated. The complete continuity of N and the Fredholm 
property of L yield the finiteness of these solutions. Moreover, by virtue 
of (*), the functional I(u) defined by the relation f(u)=Lu+Nu—f 
satisfies the Palais-Smale condition (C) on H. Consequently, a modification 
of Smale's version of Morse theory on Hubert space establishes the 
relations (8). 

ADDED IN PROOF. Theorem 1 is true for mappings L+N of a Banach 
space X into a Banach space Y provided hypothesis (1) is altered to read 
||iyV'(w)||^c where Px is a projection of Y onto L(XjW). Moreover, 
examples show that Theorem 1 is sharp in the senses that (i) the homotopy 
class [fj] may be nontrivial and equation not solvable, (ii) the stable 
homotopy class of fj may be trivial, yet equation (1) is solvable by the 
criterion given in Theorem 1 with m^O. 

BIBLIOGRAPHY 

1. J. Leray and J. Schauder, Topologie et équations fonctionelles, Ann. Sci. École 
Norm. Sup. 51 (1934), 45-78. 

2. A. S. Svarc, The nomotopic topology of Banach spaces, Dokl. Akad. Nauk SSSR 
154 (1964), 61-63 =Soviet Math. Dokl. 5 (1964), 57-59. MR 28 #3309. 

3. L. Nirenberg, An application of generalized degree to a class of nonlinear problems, 
Colloq. Analyse Fonctionelle, Liège, 1972, pp. 57-74. 

4. J. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. 

BELFER GRADUATE SCHOOL, YESHIVA UNIVERSITY, N E W YORK, N E W YORK 10033 

Current address (E. Podolak): Department of Mathematics, Princeton University, 
Princeton, New Jersey 08540 


