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ABSTRACT. Both David London and Mark B. Hedrick have
independently generalized a result of M. Marcus and M. Newman
concerning the behavior of the permanent at a minimum on the set
of doubly stochastic matrices. The author generalizes this last result
and simplifies the proof appreciably. He proves the following. Let
A be a doubly stochastic matrix and let X be a set of doubly sto-
chastic matrices with the same (0, 1)-pattern as 4 in some neighbor-
hood of A4. If A4 is a critical point of the permanent relative to X,
then per A=perA( | j) for each positive a,;.

In 1926 [8], B. L. van der Waerden conjectured that the permanent
achieves a unique minimum on the set D, of nxn doubly stochastic
matrices at the matrix J,, (each of whose entries is 1/n). The conjecture has
some interesting interpretations in finite probability and finite combina-
torics. However, it is only known to be true for n less than or equal to
5 [6], [1], [2] and for the class of positive semidefinite, hermitian matrices
[5]. The most general result previously known was obtained independently
by D. London [4] and by M. B. Hedrick [3] and stated that if 4 is a
matrix in D,, at which the permanent achieves a local minimum relative
to D, then per 4 <per A(i[j) with equality for each positive a;. Both of
these papers relied heavily on methods from the definitive work of M.
Marcus and M. Newman [6] in which knowledge of the eigenvalues of
AAT was required. Since the relationship between the eigenvalues of 4
or AAT and the permanent of A appears to be extremely nebulous [7],
the author finds a great deal of beauty in the simplicity and purely com-
binatorial nature of the following proof.

THEOREM. Let A be a doubly stochastic matrix, and let X be a set of
doubly stochastic matrices with the same (0, 1)-pattern as A in some neigh-
borhood of A. If A is a critical point of the permanent relative to X, then
per A=per A(i|j) for each positive a,;.
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PrOOF. Assume that for some positive a;;, per 47per A(i[j). Observe
that for any fixed i, the permanent of 4 equals the sum of the a,; per 4(i[})
when one sums on j for positive a;;. Thus min, per A(i|j)<per A=
max; per(i[j) with equality at either extreme if and only if there is equality
throughout. A similar remark can be made for fixed j.

Let a,1),;0) be a positive entry in 4 at which the per A(i(l)lj(l)) equals
max per A(i[j) for all positive a,;. By the previous remarks, per 4<
per A(i(1)[j(1)). Likewise, there is some positive a,y) ;e such that
per A(i(1)[j(2)) is less than per A. Then there is some positive @) ;)
such that per A(i(2)] j(2)) is greater than per 4. Within » times, we must
return to a row or a column which has been used previously. For notational
convenience, we shall assume that a;q) ;1) @)@ " > Filp),ito—1)s
a;(),;1) are positive entries of A4 such that per 4(i(1)|j(1)) is greater than
per 4, per A(i(1)|j(2)) is less than per 4,- -, per A(i(p)|j(p—1)) is
greater than per 4, and per A4(i(p)|j(1)) is less than per 4, and the rows
and columns which are used occur exactly twice.

Choose 0<x<min{a,;1) ;a)> " * * » Gipy.51))- Consider the doubiy stochas-
ticmatrix 4 (x) defined by a;;(x)=a,; for (i, j) different from (i(1),j(1)), - - -,
i(p), /(1)) and

40,50 (%) = Gay50) — X,
@), (%) = G50 + X,

(), io-1) (%) = @itp),i-1) = X5
and
@ip),i0) (%) = Qyp),50) + X
Define f(x) to be per A(x). Then since f(0) equals per 4 and 4 is a critical

point of the permanent relative to X, the derivative of f(x) evaluated at
0 equals 0. Thus

[per AGi(1) [j(2)) +- - -+ per A(i(p) | j(1))]
— [per A(i(1) | j(1)) +- - -+ per A(p) | j(p — 1))]
equals the derivative of f(x) evaluated at 0 which equals 0. However, by

the choice of the per A(i(1)|j(1)), - - -, per A(i(p)|j(1)), the above sum is
negative which is a contradiction.

COROLLARY L. If A is a matrix at which the permanent achieves a
local minimum relative to D, then per A=per A(i|j) with equality whenever
a;; is positive.

The procedure to prove Corollary I can be found in [3].
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CorOLLARY II. If A is a matrix at which the permanent achieves a
local maximum relative to D, then per AZper A(i|j) with equality when-
ever a;, is positive.

Write A as a direct sum of fully indecomposable matrices and use the
techniques in [3].

It is worth noting that the boundary of D, satisfies the hypothesis of
the Theorem. Likewise, let B be a doubly stochastic matrix. Define X to
be the set of all doubly stochastic matrices C such that c;; is zero whenever
b;; is zero. Then X satisfies the hypothesis of the Theorem.

M. Marcus and M. Newman showed that the permanent achieves a
local minimum atJ,, [6], and it is immediate that the permanent achieves an
absolute maximum at a permutation matrix (take the product of the n
row sums). The author would be very interested in seeing examples at which
the permanent achieves a local minimum or local maximum relative to
D,, besides these.
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