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ABsTRACT We show that there exists a subspace G with a basis
of some Banach space E with a basis, such that no basis of G can be
extended to a basis of E.

A sequence {x,} in a (real or complex, infinite dimensional) Banach
space E is called (a) a basis of E, if for every x € E there is a unique
sequence of scalars {a,} such that x=2>72, a,x;; (b) a basic sequence if
{x,} is a basis of its closed linear span [x,] in E. The following problem
was raised by A. Pelczynski (see [5] or [7, p. 27, Problem 4.1]): Let {y,}
be a basic sequence in a Banach space E with a basis. Does there exist a
basis {x,} of E with the property that for each » there is an index i, such
that x; =y,? Or, in other words, can {y,} be extended to a basis of E?

A.Pelczynskiand H. P. Rosenthal have communicated to us that recently
they have solved this problem in the negative, for E=L?([0, 1]) 2<p< o)
and E=L'([0, 1]) [6]. However, since in their counterexamples {y,} had
some permutation {ys(,)} Which can be extended to a basis of E, they have
raised the problem whether there exists a basic sequence {y,} in some
Banach space E with a basis, such that no permutation {y,,,} of {y,} can
be extended to a basis of E. In the present note we shall show even more,
namely, that there exists a subspace G with a basis of some Banach space E
with a basis, such that no basis of G can be extended to a basis of E. Our
proof is very short, but uses deep results of Enflo [1], Lindenstrauss [4]
and Johnson-Rosenthal-Zippin [3].

ExaMpLE. Let F be a separable Banach space which has no basis [1].
By [4] there exists a separable Banach space B such that the conjugate
space B* has a shrinking basis and that B* *|mw(B) is isomorphic to F,
where 7 is the canonical embedding of B into B**. Then B** has a basis
(see e.g. [7, Theorem 4.2, p. 272]) and by [3, Theorem 1.4(a)], B has a
shrinking basis, so 7(B) has a shrinking basis. However, no basis {y,} of
G =m(B) can be extended to a basis {y,} U{y,} of E=B**, since otherwise
the quotient space £/G=B**|w(B) would have a basis, namely {w(y,)},
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where w is the canonical mapping of E onto E/G (seee.g. [2, §2, Theorem
1], or [7, Proposition 4.1, p. 27]), whence F would have a basis, in
contradiction with our choice of F. This completes the proof.

REMARK. W. B. Johnson has observed that if we start with a separable
Banach space F which does not have the bounded approximation property
(i.e. there is no sequence of finite rank operators {v,} on F such that
lim,,_, ,v,(z)=z for all z€ F), then our proof above also yields an example
of a subspace G=m(B) with a basis of the Banach space E=B** with a
basis, such that there exists no sequence of finite rank operators {,} on E
satisfying lim,,_, , #,(x)=x for all x € Eand u,(G)<=G for n=1,2,---.

Finally, let us also raise two problems suggested by the preceding:
(1) In which Banach spaces E with a basis does there exist (a) a basic
sequence {y,} which cannot be extended to a basis of E? (b) a basic
sequence {y,} such that no permutation {y,(,)} of {y,} can be extended to a
basis of E? (c) a subspace G with a basis such that no basis of G can be
extended to a basis of E? It is even conceivable that every Banach space
E with a basis, which is not isomorphic to /2, contains such a basic sequence
{yx} or such a subspace G. (2) If u is a continuous linear mapping of /* onto
a separable Banach space F, does Ker « have a basis? (The answer is not
known even for F=I/2 or c,.) An affirmative answer would yield another
example of the above type, since there exists a continuous linear mapping
u of I* onto any separable Banach space F which has no basis and then
E[Ker u is isomorphic to F, so one could take G=Ker u.
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