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ABSTRACT. Our notation and definitions are taken from 
Chung [1]. A closed set H is called recurrent in the sense of Harris 
if there exists a (T-finite measure <p such that for E^H9 <p(E)>0 
implies Q(x,E)=l for all xG H. 

THEOREM 1. Let X be absolutely essential and indecomposable. 
Then there exists a closed set JSÇ X such that B contains no un­
countable disjoint collection ofperpetuable sets if and only if X= H+1 
where H is recurrent in the sense of Harris and I is either inessential 
or improperly essential. 

THEOREM 2. If there exists no uncountable disjoint collection of 
closed sets, then there exists a countable disjoint collection {AJ£ii 
of absolutely essential and indecomposable closed sets such that 
1=*X— 2£Li Dn is either inessential or improperly essential. 

Under the additional assumption that Suslin's conjecture holds, 
Theorem 2 was proved by Jamison [7]. 

In this announcement we present two theorems which show that a 
major portion of Doeblin's and Harris' theory may be derived without 
making the standard assumptions about the reference measure which 
have characterized this theory (see [8, p. 4], [1], [2], [3], [4], [5], [6]). 
The second theorem is due to Jamison under the additional assumption 
that Suslin's conjecture holds. Our notation and definitions are taken 
from [1]. A closed set H^X is called recurrent in the sense of Harris if 
there exists a cr-finite measure cp such that if E^H where c?(E)>0, then 
Q(x,E)=L 

THEOREM 1. Let X be absolutely essential and indecomposable. Then 
the following are equivalent: 

(i) There exists a closed set B such that B contains no uncountable 
disjoint collection of perpetuable sets. 

(ii) X is normal. 
(iii) X=H+I where H is recurrent in the sense of Harris and I is either 

inessential or improperly essential. 
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1 This paper is based on a part of the author's Ph.D. thesis prepared at the Ohio 
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SKETCH OF PROOF. The equivalence of (ii) and (iii) is known (see 
[5], [6]). (iii) implies (i) follows from [1, Proposition 21], and the fact 
that there exists a cr-finite invariant measure TT on H such that if E^H9 

then 7T(JE')=0 if and only if E is inessential. In order to prove that (i) 
implies (ii) we use [1, Proposition 23.1] and transfinite induction. 

THEOREM 2. If there exists no uncountable disjoint collection of closed 
sets, then there exists a countable collection {Dn}™=1 of absolutely essential 
and indecomposable closed sets such that I=X— 2SU Dn ^ either inessen­
tial or improperly essential. 

SKETCH OF PROOF. There exists a function C(-) from the binary 
sequences into {closed subsets of X}U{0} such that 

(a) C(s) is either closed or empty, 
(b) if s^t, then C(t)^C(s), 
(c) if neither s^t nor t^s, then C(s)nC(t)=0 (see [6, p. 289]). 

Define M—{C(s)\s binary sequence}—{0}. Let Q be the first uncountable 
ordinal. For each ordinal /?<Q, let K(P)=\J{C(s) e ^ :o rder 5=^}. 
Theorem 2 follows from an argument using the construction of a a-
finite measure m such that m(K(f}))>0 for all /?<£}, and the following 

LEMMA. Assume that every closed set is absolutely essential and decom­
posable and there exists no uncountable disjoint collection of closed sets. 
Then there exists no o-finite measure q> such that C e M implies m(C)>0. 
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