ABSOLUTELY SUMMING, L_1 FACTORIZABLE OPERATORS AND THEIR APPLICATIONS

BY Y. GORDON¹ AND D. R. LEWIS

Communicated by Robert Bartle, March 5, 1973

Grothendieck asked in [3], Problem 2, p. 72 and in the remarks on p. 39, whether every 1-absolutely summing operator between two Banach spaces can be factored through an L_1 space. Theorem 2 announces the negative answer to this question.

Corollaries 1 and 2 provide counterexamples to two other questions equivalent to Problem 2, and mentioned in [3]: Can every operator T, whose adjoint T' is 1-absolutely summing, be factored through a C(K) space? Is every operator which has the form UV, where U' and V are both 1-absolutely summing, an integral operator?

Theorems 3 and 5 establish the existence of a sequence of finite-dimensional Banach spaces which have the property that their unconditional basis constants tend to infinity. This answers the question mentioned for example in [1], [4], [5], [7] and asked also by A. Pełczyński and H. P. Rosenthal.

Part (5) of Theorem 4 settles a conjecture of McCarthy [8, p. 269] regarding the distance of $\mathcal{L}(l_2^n, l_2^n)$ from the subspaces of l_1 .

Theorem 5 answers Problem 2 [6] by proving that when $1 \le p \ne 2 \le \infty$, M_{σ_p} (see definition below) has no unconditional basis.

Detailed proofs of these and other results will be given elsewhere.

Let $\mathcal{L}(E, F)$ denote the space of operators between two Banach spaces E and F. $E \otimes^{\alpha} F$ denotes the completion under the α norm of the algebraic tensor product $E \otimes F$. In particular, $l_2 \otimes^{\vee} l_2$, $l_2 \otimes^{\wedge} l_2$ and $l_2 \otimes^{\sigma} l_2$ are the spaces of *compact*, *integral* and *Hilbert-Schmidt* operators respectively, from l_2 to l_2 . Here \vee and \wedge denote the "least" and "greatest" crossnorms respectively [3]. Other classes of operators considered here are:

- (1) $\Pi_p(E, F)$ $(1 \le p \le \infty)$, the space of *p-absolutely summing* operators from E to F equipped with the norm π_p [9].
- (2) $I_p(E, F)$, the space of *p*-integral operators from E to F equipped with the norm i_p [10].
- (3) $\Gamma_p(E, F)$, the space of L_p -factorizable operators from E to F, that is, $T \in \Gamma_p(E, F)$ if and only if $T \in \mathcal{L}(E, F)$ and there is a positive measure space (Ω, Σ, μ) and $A \in \mathcal{L}(E, L_p(\mu))$, $B \in \mathcal{L}(L_p(\mu), F'')$ such that iT = BA,

AMS (MOS) subject classifications (1970). Primary 46B15, 47B10.

¹ Author is partially supported by National Science Foundation Grant GP-34193.

where $i: F \to F''$ is the canonical injection. Here $\gamma_p(T) = \inf \|A\| \|B\|$, taken over all possible (Ω, Σ, μ) and factorizations A, B, is the norm associated with $\Gamma_{p}(E, F)$ [2].

The unconditional basis constant of a Banach space E is defined as

$$\chi(E) = \inf_{\{e_i\}_{i \in I}} \sup_{\varepsilon_i = \pm 1, x_i} \left\| \sum_{i \in I} \varepsilon_i x_i e_i \right\| / \left\| \sum_{i \in I} x_i e_i \right\|$$

where the supremum is taken over all the choices of signs $\varepsilon_i = \pm 1$ with $\varepsilon_i = 1$ for all but finitely many i, and over all vectors $\sum_{i \in I} x_i e_i$ in E, and the infimum ranges over all possible unconditional bases $\{e_i\}_{i\in I}$ of E.

For any ideal norm α ([2], [11]) and a Banach space E we set $\alpha(E) = \alpha(I)$, where I is the identity operator on E. The distance between two isomorphic Banach spaces E and F is defined as

$$d(E, F) = \inf ||T|| ||T^{-1}||,$$

taken over all isomorphisms T from E onto F.

Let M be the linear vector space of all matrices $a = (a_{ij}), i, j = 1, 2, 3, \dots$ in which only a finite number of elements a_{ij} is not zero. For $1 \leq p < \infty$ and $a \in M$ define the norms

$$\sigma_p(a) = \left[\operatorname{trace}(aa^*)^{p/2}\right]^{1/p},$$

and

$$\sigma_{\infty}(a) = \max\{\sum a_{ij}x_{i}y_{j}; \sum x_{i}^{2} = \sum y_{i}^{2} = 1\}.$$

Let M_{σ_p} be the completion of M under the norm σ_p [6], [8], and let $M_{\sigma_p}^n$ be the subspace consisting of all $a \in M$ for which $a_{ij} = 0$ if $\max(i,j) > n$. M_{σ_p} is reflexive if $1 ; <math>M'_{\sigma_p} = M_{\sigma_q}$ where 1/p + 1/q = 1.

Finally, given two positive functions f and g defined on the integers, we say that $f(n) \geq g(n)$ if the sequence g(n)/f(n) is bounded, and if also $g(n) \gtrsim f(n)$ we then write $f(n) \sim g(n)$.

Our key to the proofs of the results mentioned here is the following theorem:

THEOREM 1. Let J_n (respectively, I_n) be the natural inclusion of $l_2^n \otimes ^n l_2^n$ (respectively, $l_2^n \otimes^{\vee} l_2^n$) to $l_2^n \otimes^{\sigma} l_2^n$. Then

- (1) $\gamma_1(J_n) \sim n \text{ and } \pi_1(J_n) \sim n^{1/2}$. (2) $\gamma_1(I_n) \sim n^{3/2} \text{ and } \pi_1(I_n) \sim n$.

Let $X^{(0)} = X$ and $X^{(i)}$, i = 1, 2, 3, ..., denote the ith adjoint of a Banach space X. Of course if $X = l_2 \otimes^{\vee} l_2$, then $X^{(1)} = l_2 \otimes^{\wedge} l_2$, $X^{(2)} = \mathcal{L}(l_2, l_2)$, $X^{(3)} = \mathcal{L}(l_2, l_2)'$ etc. Theorem 1 provides the following counterexamples to Problem 2 of [3, p. 72]:

THEOREM 2. For each i = 0, 1, 2, ..., there is a 1-absolutely summing

operator T_i mapping $(l_2 \otimes^{\vee} l_2)^{(i)}$ to $l_2 \otimes^{\sigma} l_2$ which does not factor through any L_1 space.

COROLLARY 1. For each $i=0,1,2,\ldots$, there is an operator T_i from $l_2 \otimes^{\sigma} l_2$ to $(l_2 \otimes^{\vee} l_2)^{(i)}$ whose adjoint T_i' is 1-absolutely summing, and yet T_i does not factor through any C(S) space.

COROLLARY 2. There is an operator of the form UV which is not 1-integral, and yet both U' and V are 1-absolutely summing.

THEOREM 3. Let 1/p + 1/p' = 1 and 1/q + 1/q' = 1. Then

$$\chi(l_{q'}^{n} \otimes^{\vee} l_{p'}^{n}) = \chi(l_{p}^{n} \otimes^{\wedge} l_{q}^{n}) \gtrsim n^{1/2}; \qquad \text{if } \infty \geq q, p \geq 2,$$

$$\gtrsim n^{1-1/q}; \qquad \text{if } p \geq 2 \geq q \geq 1,$$

$$\gtrsim n^{1-1/p}; \qquad \text{if } q \geq 2 \geq p \geq 1,$$

$$\gtrsim n^{3/2-1/p-1/q}; \qquad \text{if } 2 \geq p, q \geq 1.$$

COROLLARY 3. If p, q > 1, then $l_p \otimes^{\wedge} l_q$, and $l_{q'} \otimes^{\vee} l_{p'}$, are not isomorphic to any complemented subspace of a Banach space with an unconditional basis.

REMARK. It was proved in [6] that if $1/p + 1/q \ge 1$ and $1 \le p, q < \infty$ then $l_p \otimes^{\vee} l_q$ is not isomorphic to a subspace of a space with an unconditional basis. Our approach therefore provides the other case as well with the weaker conclusion.

COROLLARY 4. Let $1 \le r, p \le 2 < q \le \infty$. Then $\Pi_{r'}(l_q, l_p)$ and $I_r(l_p, l_q)$ are not isomorphic to any complemented subspace of a Banach space with an unconditional basis.

THEOREM 4. Let $\alpha = \wedge$ or \vee , $E_{\alpha} = l_2^n \otimes^{\alpha} l_2^n$ and I be the identity operator on E_{α} . Let $\varphi: L_1(\mu) \to E_{\alpha}$ be any quotient map and $i: E_{\alpha} \to L_{\infty}(\mu)$ be any isometric embedding. Then

- $(1) \ \pi_1(E_\alpha) \sim n.$
- $(2) i_{\infty}(E_{\alpha}) \sim n.$
- (3) $\gamma_1(E_n) \sim n$.
- $(4) \ \gamma_2(E_\alpha) = \sqrt{n}.$
- (5) Inf $\{d(E_{\alpha}, Y); Y \subset l_1\} \sim \sqrt{n}$.
- (6) Inf $\{\pi_1(u); u: E_\alpha \to L_1(\mu) \text{ and } \varphi u = I\} \sim n^{3/2}$.
- (7) $\inf\{\|u\|; u: L_{\infty}(\mu) \to L_{1}(\mu) \text{ and } \varphi ui = I\} \sim n^{3/2}$.
- (8) $\pi_1(\varphi) \sim \sqrt{n}$.
- (9) $\inf\{d(E_{\wedge}, Y); Y \subset l_p\} \sim \sqrt{n}, \text{ if } 1 \leq p < \infty.$

THEOREM 5. For any $1 \le p \le \infty$, $\chi(M_{\sigma_p}^n) \sim n^{\lfloor 1/p-1/2 \rfloor}$. If $p \ne 2$, M_{σ_p} is not isomorphic to a complemented subspace of a Banach space with an unconditional basis.

REMARKS. It is possible to obtain stronger results by adding the following definition: A Banach space E is a U_{λ} -space ($\lambda \ge 1$) if given any finite-dimensional subspace $G \subseteq E$, there is a closed subspace $F, G \subseteq F \subseteq E$, a space U with an unconditional basis, and operators $S \in \mathcal{L}(F, U)$, $T \in \mathcal{L}(U, F)$ such that TS is the identity on F and $||S|| \, ||T|| \, \chi(U) \le \lambda$. Denote

$$\chi_{u}(E) = \inf \{ \lambda; E \text{ is a } U_{\lambda}\text{-space} \}.$$

Observe that in the definition U and F may vary with each choice of G and may be finite- or infinite-dimensional. All \mathcal{L}_p spaces are U_{λ} -spaces for appropriate λ 's. Also $\chi(E) \geq \chi_{\mu}(E)$ for every E. We now have

Theorem 6. If
$$A \in \Pi_1(E, F)$$
, then $\gamma_1(A) \leq \pi_1(A)\chi_u(E)$.

Our results imply that none of the spaces $(l_p \otimes^{\vee} l_q)^{(i)}$ $(1 \leq p, q < \infty, i = 0, 1, 2, \ldots)$, M_{σ_p} $(1 \leq p \neq 2 \leq \infty)$ are U_{λ} -spaces for any λ , since on each of these spaces there is a 1-absolutely summing operator which does not factor through any L_1 space. Moreover, the estimates of Theorems 3 and 5 remain the same if χ is replaced by χ_u .

REFERENCES

- 1. Y. Gordon, Asymmetry and projection constants of Banach spaces, Israel J. Math. 14 (1973), 50-62.
- 2. Y. Gordon, D. R. Lewis and J. R. Retherford, Banach ideals of operators with applications, J. Functional Analysis 14 (1973).
- 3. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1-79. MR 20 # 1194.
- 4. V. I. Gurarii, M. I. Kadec and V. I. Macaev, On Banach-Mazur distance between certain Minkowski spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronon. Phys. 13 (1965), 719-722. (Russian) MR 32 #8113.
- 5. ——, Dependence of certain properties of Minkowski spaces on asymmetry, Mat. Sb. 71 (113) (1966), 24–29. (Russian) MR 33 #7818.
- 6. S. Kwapien and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. MR 42 #5011.
- 7. J. Lindenstrauss and M. Zippin, Banach spaces with sufficiently many Boolean algebras of projections, J. Math. Anal. Appl. 25 (1969), 309-320. MR 38 #4964.
 - 8. C. A. McCarthy, c_n, Israel J. Math. 5 (1967), 249–271. MR 37 #735.
- 9. A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333–353. MR 35 #7162.
- 10. A. Persson and A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62. MR 39 #4645.
- 11. A. Pietsch, Adjungierte normierten Operatorenideale, Math. Nachr. 48 (1971), 189-211. MR 44 #7307.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601