EXAMPLES IN THE THEORY OF THE SCHUR GROUP

BY CHARLES FORD AND GERALD JANUSZ

Communicated by Joseph J. Rotman, April 23, 1973
Let K be a subfield of a cyclotomic extension of the rational field Q. The Schur group of K is the subgroup $S(K)$ of the Brauer group of K consisting of those classes of central simple K algebras represented by an algebra which appears as a direct summand of a group algebra $Q[G]$ for some finite group G. For a prime p let $S(K)_{p}$ denote the subgroup consisting of elements having p-power order. It is known by [1] that $S(K)_{p}$ can have an element of order p^{a} only when a primitive p^{a} root of unity, $\varepsilon_{p^{a}}$, is in K.

Suppose K is a field which satisfies $Q\left(\varepsilon_{p^{a}}\right) \subseteq K \subseteq Q\left(\varepsilon_{n}\right)$ and p^{a} is the highest power of p dividing n. It is known that

$$
\begin{equation*}
S(K)_{p}=K \otimes S\left(Q\left(\varepsilon_{p^{a}}\right)\right)_{p} \tag{1}
\end{equation*}
$$

in the case $K=Q\left(\varepsilon_{n}\right)$. That is every element in $S(K)_{p}$ is represented by an algebra $K \otimes B$ with B central simple over $Q\left(\varepsilon_{p^{a}}\right)$ [2].
The assertion (1) also holds for K if p does not divide $\left(Q\left(\varepsilon_{n}\right): K\right)$. In this paper we present, for each prime p, fields K for which (1) does not hold.

Let p be a prime and r and s distinct primes such that $r \equiv s \equiv 1 \bmod p$. Then the field $L=Q\left(\varepsilon_{p}, \varepsilon_{r}, \varepsilon_{s}\right)$ has two nontrivial automorphisms σ, τ which satisfy
(i) $\sigma^{p}=\tau^{p}=1$
(ii) σ fixes ε_{p} and $\varepsilon_{r} ; \tau$ fixes ε_{p} and ε_{s}.

Let K be the subfield of L fixed by $\langle\sigma, \tau\rangle$. Let A be the algebra defined by

$$
\begin{gathered}
A=\sum L u_{\sigma}^{i} u_{\tau}^{j} ; \\
u_{\sigma}^{p}=u_{\tau}^{p}=1, \quad u_{\sigma} u_{\tau}=\varepsilon_{p} u_{\tau} u_{\sigma} ; \\
u_{\sigma} x=\sigma(x) u_{\sigma}, \quad u_{\tau} x=\tau(x) u_{\tau} \quad \text { for } x \text { in } L .
\end{gathered}
$$

Then A is central simple over K and is a simple component of the group algebra $Q[G]$ where G is the group of order $p^{3} r s$ generated by $u_{\sigma}, u_{\tau}, \varepsilon_{p r s}$. We use this algebra for several examples.

Let f_{r} be the exponent of $r \bmod s$; that is, f_{r} is the least positive integer f such that $r^{f} \equiv 1 \bmod s$. Similarly let f_{s} be the exponent of $s \bmod r$.

Theorem. (1) If $p \mid f_{r}$ then the r-local index of A is p. In particular A has index p if either $p \mid f_{r}$ or $p \mid f_{s}$.
(2) If A has r-local index p and p^{2} divides either $r-1$ or f_{r} then A is not

[^0]similar to $K \otimes B$ for any $Q\left(\varepsilon_{p}\right)$-central simple algebra B in $S\left(Q\left(\varepsilon_{p}\right)\right)$. In particular, $S(K)_{p} \neq K \otimes S\left(Q\left(\varepsilon_{p}\right)\right)_{p}$.

We remark that when p^{2} does not divide either $r-1$ or $s-1$ then A is similar to $K \otimes B$ with B representing a class in $S\left(Q\left(\varepsilon_{p}\right)\right)$. In fact B can be explicitly described as follows. Let the Galois group of $Q\left(\varepsilon_{p}, \varepsilon_{r}, \varepsilon_{s}\right)=L$ over $Q\left(\varepsilon_{p}\right)$ be $\langle\alpha, \beta\rangle$ where α has order $r-1$ and fixes ε_{s} while β has order $s-1$ and fixes ε_{r}. Then

$$
\begin{gathered}
B=\sum L u_{\alpha}^{i} u_{\beta}^{j} \\
u_{\alpha}^{r-1}=u_{\beta}^{s-1}=1, \quad u_{\alpha} u_{\beta}=\varepsilon u_{\beta} u_{\alpha} \\
u_{\alpha} x=\alpha(x) u_{\alpha}, \quad u_{\beta} x=\beta(x) u_{\beta} \quad \text { for } x \in L
\end{gathered}
$$

Here ε is a suitable power of ε_{p}.
It should be observed also that for any prime p, there exist primes r, s which satisfy the conditions in (2) of the theorem. In fact a little more can be said. Let p be any prime and m a positive integer. By Dirichlet's theorem there exist infinitely many primes r which satisfy $r \equiv 1 \bmod p^{m}$. Now for any such r there exist infinitely many primes s such that $s \equiv 1 \bmod p^{m}$ and the exponent of $s \bmod r$ equals p^{m}. In fact the Dirichlet density of the set of such s is $1 /(r-1)$.

One specific case where condition (2) holds occurs with $p=3, r=7$, $s=37$. Then $f_{r}=9$ and $f_{s}=3$.

Suppose we construct the algebra A as above using p, r, s and $m \geqq 2$ which satisfy the divisibility conditions just above. Let p^{b} and p^{c} be the highest power of p dividing $r-1$ and $s-1$ respectively. Suppose p^{d} is the highest power of p dividing f_{r} and $p^{m}=f_{s^{*}}$. Notice $b, c \geqq m$. Then p^{b+d} and p^{c+m} are the exact powers of p dividing $r^{f_{r}}-1$ and $s^{f_{s}}-1$ respectively. The algebra A has index p and we ask for which values of n will $K\left(\varepsilon_{p^{n}}\right)$ be a splitting field for A ? In case $d=0$ the least n for which $K\left(\varepsilon_{p^{n}}\right)$ splits A is $n=c+m$. In case $d \neq 0$ then the least n is the larger of the numbers $b+d$ and $c+m$. In any case the least n is larger than m.

We formulate this more abstractly as follows.
Theorem. Given a prime p and an integer $m \geqq 2$ there exists a finite group G and a simple direct summand A of $Q[G]$ having center K and index p such that
(i) $\varepsilon_{p} \in K, \varepsilon_{p^{2}} \notin K$,
(ii) for some integer $n>m, K\left(\varepsilon_{p^{n}}\right)$ is a splitting field for A but no proper subfield is a splitting field.

By the general theory of algebras we know A has a splitting field E such that $(E: K)=p$. Here $\left(K\left(\varepsilon_{p^{n}}\right): K\right)=p^{n-1}$ can be made as large as desired by selecting suitable G and yet $K\left(\varepsilon_{p^{n}}\right)$ is a "minimal splitting field" in the sense that no proper subfield splits the algebra.

References

1. M. Benard and M. Schacher, The Schur subgroup. II, J. Algebra 22 (1972), 378-385.
2. G. J. Janusz, The Schur group of cyclotomic fields, J. Number Theory (to appear).

Department of Mathematics, Washington University, St. Louis, Missouri 63130
Department of Mathematics, University of Illinois, Urbana, Illinois 61801

[^0]: AMS (MOS) subject classifications (1970). Primary 16A26; Secondary16A40, 20C05.

