
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 6, November 1973 

ADDITIVE GROUP THEORY—A PROGRESS REPORT 

BY HENRY MANN 

The first theorem in additive group theory was proved by Cauchy [2] 
in 1813. 

THEOREM OF CAUCHY. If A and B are residues mod p and A + B = 
{x:x = a + b,ae A,b e B} then either A + B = G or 

(1) \A + B\^ \A\ + |£| - 1. 

(Here \S\ denotes the cardinal of the set S.) 

This theorem was rediscovered by Davenport [5], [6] and is now known 
as [21] the Cauchy-Davenport theorem. Cauchy used it to show that 
every residue mod (p) is a sum of two squares i.e. the congruence 

(2) x2 + j , * s r ( p ) 

is solvable for every r. One easily obtains this result by setting 
A = B = {x:x = a2(p)}. We then have \A\ = \B\ = (p + l)/2 and (2) 
follows from (1). Applying the C.-D. theorem to the representation of 
residues by sums of fcth powers one may without loss of generality restrict 
k to divisors of (p — 1). The C.-D. theorem then gives the result that 
every residue is a sum of not more than k kth powers. A considerable 
improvement is possible if one excludes the value k = (p — l)/2. G. A. 
Vosper [30], [31], [21] refined the C.-D. theorem by completely charac­
terizing those pairs A, B for which 

\A + B\ = \A\ + |B| - 1. 

Using Vosper's result one can show [4], [21]: If al9 . . . , an are non-0 
residues mod p and if n ^ (k + l)/2 then the congruence 

(3) axx\ + • • • + anx
k
n = r (p) 

is solvable for every r provided that k < (p — l)/2. 
This result was extended to finite fields of order q = pd by Tietâvâinen 

[29] under the assumptions k < (q - l)/2, (q - l)/k)(pv - 1 for 
0 < v < d. Tietavainen's proof requires a result of Kempermann [13] on 
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Abelian groups which is analogous to Vosper's theorem on cyclic groups 
of prime-order. 

The C.-D. theorem was generalized in various ways to Abelian groups. 
M. Kneser [15], [21] obtained the following result: There exists a sub­
group H such that A+B+H=A+B and 

(4) \A + B\^\A + H\ + \B + H\- \H\. 

From this one can get an earlier result [20], [21]. If 

\A + H\ ^ \A\ + \H| - 1 

for all subgroups H then \A + B\ ^ \A\ + \B\ - 1 for all sets B. This 
result implies a theorem of I. Chowla [3]. If A consists of 0 and residues 
prime to an integer m then \A + B\ ^ \A\ + |B| — 1 where B is any set of 
residues mod m. 

The inequality (4) implies that A + B = G if \A\ + |B| > G. This 
result can be obtained easily even if G is not Abelian. Although the 
easiest way to prove it uses the associativity of G one can obtain the 
theorem even for quasigroups. This was shown by W. A. McWorter [24]. 
McWorter's argument runs as follows. Let the product AB contain the 
element c exactly n(c) times. Then the product AB must contain c exactly 
\A\ — n(c) times. But AB can contain c at most B times. Hence 

\A\ - n(c) S \B\ = \G\ - \B\, n(c) ^ \A\ + |B| - |G|, 

and this implies McWorter's theorem. 
In another direction Kneser [18] generalized his theorem to locally 

compact Abelian groups. If \i denotes Haar measure and \i^ interior 
Haar measure and if A and B are measurable sets then either 

fjL^{A + B) ^ fi(A) + fi(B) 

or there is an open compact subgroup H such that A + B + H = A + B 
and 

»M + B) ^ \x{A + H) + »(B + H)~ AH). 

Some results along these lines on noncommutative groups were 
obtained by Kempermann [14]. 

Let us now consider sums of n sets C l 5 . . . , Cn each of which contain 
only two elements Ct = {ch dt}. Subtracting ]T c( from £ Ct we obtain a 
sum YJ At where At = {0, a J . This sum can also be described as the union 
of all sums over all subsequences of the sequence {au . . . , an}. The sum 
£ At also includes the sum over the empty set. One does not like to 
include this trivial representation of 0 and so we shall denote by ]T (S) all 
elements which are equal to a sum over a nonempty subsequence of 
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S = {au a2, . . . , an} in symbols 

X(S) = {x; x = ah + • • • + aiw, ^ < i2 < • • • < ia, w > 0}. 

Let now S = {öl9 . . . , #„} be a sequence of elements of Gp, the cyclic 
group of order p. Suppose that in S no element repeats more than k times. 
If n ^ k it is possible to partition the sequence into k nonempty sets 
Au . . . , Ak and the C.-D. theorem shows 

\A, + • • • + Ak\ ^ \S\ - (k - 1) = n - k + 1. 

Hence if n ^ p + k — 1 then every element is a sum of exactly fe elements 
of the sequence [22]. In particular if fc = p we see that every element is a 
sum of exactly p elements of S. If any element is repeated p times then at 
least 0 can be represented as a sum of p elements. Thus if \S\ ~ 2p — 1 
then 0 is a sum of exactly p elements of S. An easy induction carries this 
result over to any finite Abelian group and yields a theorem first proved by 
Erdös, Ginzburg and Ziv [9] : Let S be a sequence of elements of an 
Abelian group G and let \S\ = In — 1 then 0 can be represented as a sum 
of exactly n elements of S. The theorem of Erdös, Ginzburg and Ziv 
carries over even to all solvable groups if it is permissible to arrange the 
summands in any order. The problem is open for nonsolvable groups. 
This problem can be considered also from a different point of view. Let 
G* be the direct product of G and a cyclic group of order n and consider 
elements of the form (s, 1). Let S be a set of such elements. Then the 
theorem of Erdös, Ginzburg and Ziv may be stated by saying that 
£(S)9 0 if \S\ = In — 1. This leads to the following conjecture first 
stated by Erdös: Let s(G) be the smallest integer such that \S\ = s implies 
0 e £(S) where S is a sequence of elements of G, and here and in the 
following all groups are Abelian. Erdös conjectured s(Gn x Gn) = 2n — 1 
where \Gn\ = n. This conjecture was proved independently by D. 
Kruyswijk [1] and John Olson [27]. They proved: If n1\n2 and 
G = Gx x G2, \GX\ = nu G2 = n2 then s(G) = n1 + n2 — 1. In the 
proofs of Olson and Kruyswijk one first shows [26] 

s(G) = 1 + i > - 1) 
i = l 

when G is an Abelian p-group with invariants n l 5 . . . , nt. This result 
suggests s(G) = 1 + £ j (nt — 1) for any Abelian group G with in­
variants n1 | n2 | • • • | nt. Kruyswijk [12], Baayen and van Emde Boas 
[11], [12] verified this conjecture in a large number of cases. However, 
the conjecture is false in general. The first counterexample was found by 
Baayen [12] in the group of type (2, 2, 2, 2, 6). Later van Emde Boas and 
D. Kruyswijk [12] found a counterexample in the group of type (3,3,3,6). 
The problem is still open for groups with three generators. 



1072 HENRY MANN [November 

If G is the class group of an algebraic number field and s = s(G) then, 
as first pointed out by Davenport, any ideal with s or more prime factors 
has a factor which is a principal ideal. 

An interesting special case arises if au . . . , ac are distinct and not 0. 
Let c(G) = c denote the smallest integer such that X(S) = G if \S\ = c(G). 
Erdös and Heilbronn [10] showed 

V4p + 5 - 2 < c(Gp) S 2^6p + 1 

and conjectured c(G) ;g l^fp + 1. This conjecture was proved by Olson 
[25] who even improved it to c(G) ^ ^[Àp — 3 + 1 which is within at 
most 2 of the best possible value. 

The analogous problem for groups of type (p, p) was considered by 
Mann and Olson [23]. If G is oftype (p,p) then 2p - 2 S c(G) ^ 2p - 1. 
They also showed that Z(5) 3 0 if S has 2p — 2 distinct non-0 elements 
and gave an example of a set S with 2p — 3 elements such that S(S) ^ G. 

It is not known for what values of p we have c(Gp) = 2p — 2. For 
/> = 3 and S = {(1, 0), (0, 1), (1, 1), (1, - 1)} we have E(S) $ (0, - 1). For 
p = 5 and p = 7 Y. S. Wou [32] proved c(Gp) = 2p - 2 and this value 
was also simultaneously found by Shen Lin by computer. For higher 
values of p the problem is still open but Wou's result makes it very likely 
that c{Gp) = 2p - 2 for p > 3. 

The result of Mann and Olson was generalized by G. T. Diderrich. 
If p, q are (not necessarily distinct) primes and if \G\ = pq then 
p + q - 2 S c(G) ^ p + q - 1. Moreover if q > 2p then c(G) = 
p -f q - 2. 

Another problem on which considerable progress has been made is the 
problem of maximal sum free sets. A set S of elements of a group G is 
called sum free if (S + S) n S = 0. The set S is called maximal sum free 
if S is sum free and \S\ ̂  \S'\ for any sum free set S'. We set /1(G) = |5| where 
S is a maximal sum free set of G. The following results are due to Diananda 
and Yap [7], [33], [34]. 

By Kneser's theorem there is a subgroup H such that S + S + H = 
S + S and 

(5) |S + S| ^ |S + H\ + \S + H\ - \H\. 

Now if S is sum free then S + if is sum free; for suppose that 
si + h1 + s2 + h2 = s3 + /Î3 . Then 

(6) sx + s2 + h = s3. 

But s 1 + s 2 + / i e S + S' + i[J = S + S, and so 5 would not be sum 
free. Since S is maximal S = S + H. Hence S consists of cosets mod H 
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and so \S\ = t \H\ for some integer t. Moreover 
\G\ ^\S + S\ + \S\^3 \S\ - \H\. 

Hence t \H\ = \S\ S (\G\ + |H|)/3, and setting \G\I\H\ = d,tg(d+ l)/3, 

This gives 

/1(G) ^ i \G\ (1 + 1/p) where p is the smallest prime = 2 (3) which 
divides \G\, 

^ i |G| if \G\ = 0 (3) and all other prime divisors of G are 
= 1(3), 

^ i(|G| - 1) if all prime divisors of \G\ are = 1 (3). 

In the first two cases there are sets S such that \S\ equals the upper 
bound. 

For p = 2 (3) let H be a subgroup of index p and set 

S = (H + g) u (H + 4g) u • • • u (H + (p - % ) 

where ^ ^ H. It is easy to see that S is sum free. In the second case we can 
take just one coset mod H where \H\ = |G|/3. 

In the case that all prime factors of \G\ are = 1 (3), let m be the exponent 
of G and let g have order m. There exists a subgroup H of index m such that 
g + H has order m in the factor group G/H. It is easily seen that 

S = (H + 2g) u (H + 50) u • • • u H + (m - 2)# 

is sum free. Since |S| = ^m - 1) |G|/m we have 

|G(1 - 1/m) S HG) S &\G\ - 1). 

In the first case Diananda and Yap were able to characterize completely 
all maximal sum free sets. The third case is still open. Diananda and Yap 
[7] conjectured X(G) = | \G\ (1 — 1/m) where m is the exponent of G. 
This conjecture is true if G is cyclic. It has been verified in a number of 
other cases for instance for elementary p-groups [28]. 
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