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For real- or complex-valued functions defined on a finite real interval, 
the concept of integral that is most suitable for numerical approximation 
is that of Riemann. There the integral is defined as a limit of Riemann 
sums, any of which can be effectively calculated (given the calculability of 
the integrand). In fact most common quadrature rules—such as the 
trapezoid rule, Simpson's rule, or the Gauss-Legendre formulas—do in 
fact approximate the integral by calculating carefully chosen Riemann 
sums. Each of these rules converges for the full class of (properly) Riemann 
integrable functions; there seems to be no larger interesting class of 
bounded functions for which any quadrature rules converge. 

For infinite intervals the situation is not so neat. The improper Riemann 
integral over [0, oo) is not defined as a limit of finite sums, and indeed 
there is no sequence of quadrature formulas 

eB(/) = i x JK,n) 

having the property that Qn( f ) -• jo ƒ whenever ƒ is improperly Riemann 
integrable.1 

What can we hope for? If we wish to exhibit ƒQ ƒ as a limit of Riemann 
sums, clearly those sums must be based on partitions of intervals that 
expand to fill [0, oo). Furthermore the gauges of those partitions—the 
lengths of their longest subintervals—must simultaneously go to zero; 
otherwise we would not get the correct integral even for functions that are 
zero outside a finite interval. 

DEFINITION. A complex-valued function ƒ, defined on [0, oo), will be 
called "simply integrable" if there is a number I with the following 
property: For every e > 0 there are numbers B = B(s) and A = A(e) such 
thatifè > 2?andII:0 = x0 < xt < • • • < xn = b is any partition of [0,è] 
withmax{(x, — xr_i)} < Aandc^, <i;2,. . . , ^n are any numbers satisfying 
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In this paper the improper Riemann integral J Q f(x)dx is understood as the finite 
limit of the proper Riemann integral f^f(x)dx as b -+ °°. 
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Êr e [xr_u x j , r = 1, 2, . . . , /i, then 

K * , - * r - i ) / « r ) - / < 8. 

The number J (which is obviously unique) is the "simple integral" of/. 
Clearly, if ƒ is simply integrable then it is improperly Riemann integrable 

and I = §Q f. (The interval ( — oo, oo), and any other half-infinite interval, 
can be handled similarly; we will deal only with [0, oo).) 

The relation of the simple integral to quadrature formulas is given in 
Theorem 3. We first characterize simple integrability, in Theorems 1 and 2. 
Proofs of these theorems are to appear in [3], among other results. 

DEFINITION. If ó is a positive number, an increasing sequence 
S = {x09xl9 . . . , xn} ofnonnegative real numbers is called "^-separated" 
if xr — xr^1 ^ ô for every r. If ƒ is defined on 5, the quantity 
Z" = i I/(*r) ~ f(xr- i)l is called "the variation of ƒ on S". 

If ƒ is defined on [0, oo), then the '^-variation o f / " ('%(ƒ)") is the 
supremum of the variations of ƒ on all ^-separated sequences. If Vô(f) is 
finite for every ô > 0, then ƒ is said to be "of bounded coarse variation" 
("BCV"). 

THEOREM I. If f is improperly integrable over [0, oo) then it is simply 
integrable if and only if it is of BCV. 

A function that is of BV on [0, oo) is of BCV; but BCV, unlike BV, 
places no restriction (other than boundedness) on the values of the function 
in any finite interval. 

So BV is a sufficient condition for simple integrability (for functions 
that are improperly integrable). Other sufficient conditions may be 
found: for example, if ƒ is monotonie on [0, oo) and is improperly 
integrable, and g is improperly integrable and \g(x)\ ^ \f(x)\ for all x, 
then g is simply integrable. (sin x)/x is not simply integrable; (sin x2)/x2 

is, though it is not of BV. 
DEFINITION. Let s be any positive number. A real-valued function ƒ, 

defined on an interval J, is "e-increasing" on J if f(y) ^ f(x) whenever JC 
and y are points of I with y ^ x 4- e. 

THEOREM 2. Let f be a real-valued function on [0, oo) that is bounded on 
every finite interval. Then for every s > 0,fis a difference of two functions 
that are E-increasing on [0, oo). ƒ is of BCV if and only if it is, for every 
s > 0, a difference of two functions that are e-increasing and bounded on 
[0, oo). 

A quadrature formula 

Ô(ƒ) = t «,/(*r) * I fix) dx 
r=l Ja 
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defines a Riemann sum for the integral it is approximating when: 
(1) ar > 0,r = 1,2, . . . , w , 
(2) a + ax + • • • + ar_x ^ xr S a 4- a t + • • • + ar, r = 1, 2, • • • , w 

and 
(3) ax + a2 + • • • + an = 6 - a. 

The partition involved is a = t0 < tx < • • • < tn = b, where tx = a -f- a l5 

2̂ = Ö + ax + a2, etc. The gauge of the partition is the largest of the 
numbers ar. If the same formula is applied to another interval [c, d]9 via 
an affine change of variable, the coefficients ar are multiplied by 
(d — c)/(b — a); and so is the gauge. 

Now say Ql9 Q2, . . . is a sequence of quadrature formulas that define 
Riemann sums, with largest coefficients Al9 A29 . . . respectively when 
applied on the interval [0, 1] or [—1, 1]. For example, if Qn is the 
(n + l)-point trapezoid formula applied to [0, 1], An = 1/n; if it is the 
«-point Gauss-Legendre formula applied to [— 1, 1], An is asymptotic to 
n/n. (That the Gauss-Legendre formulas define Riemann sums was 
shown by Stieltjes [1]; for the asymptotic estimate of An see, e.g. [2, 
p. 350].) Let Qn(f, bn) denote the result of applying Qn to the integration of 
/ o v e r [0,6„]. 

THEOREM 3. With Qn and An as above, if ƒ is simply integrable then 
lim,,-^ Qn(/, bn) = Jo fas long as 

(1) l i m ^ ^ bn = oo, and 
(2) l i m ^ bnAn = 0. 
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